Home
Class 12
MATHS
If A=[[a(11), a(12), a(13)], [a(21), a(2...

If `A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]]` and `A_(ij)` denote the cofactor of element `a_(ij)`, then `a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23)=`

A

`0`

B

`|A|`

C

`-|A|`

D

`2|A|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} \) where \( A_{ij} \) denotes the cofactor of the element \( a_{ij} \) in the matrix \( A \). ### Step-by-Step Solution: 1. **Identify the matrix and its elements**: \[ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \] 2. **Define the cofactor \( A_{ij} \)**: The cofactor \( A_{ij} \) is defined as: \[ A_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the matrix obtained by deleting the \( i \)-th row and \( j \)-th column from \( A \). 3. **Calculate the cofactors \( A_{21}, A_{22}, A_{23} \)**: - For \( A_{21} \): \[ A_{21} = (-1)^{2+1} \cdot M_{21} = -M_{21} = -\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} = - (a_{12}a_{33} - a_{13}a_{32}) \] - For \( A_{22} \): \[ A_{22} = (-1)^{2+2} \cdot M_{22} = M_{22} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} = a_{11}a_{33} - a_{13}a_{31} \] - For \( A_{23} \): \[ A_{23} = (-1)^{2+3} \cdot M_{23} = -M_{23} = -\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} = - (a_{11}a_{32} - a_{12}a_{31}) \] 4. **Substitute the cofactors into the expression**: Now substitute \( A_{21}, A_{22}, A_{23} \) into the expression: \[ a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} \] becomes: \[ a_{11}(- (a_{12}a_{33} - a_{13}a_{32})) + a_{12}(a_{11}a_{33} - a_{13}a_{31}) + a_{13}(- (a_{11}a_{32} - a_{12}a_{31})) \] 5. **Simplify the expression**: Expanding this gives: \[ -a_{11}a_{12}a_{33} + a_{11}a_{11}a_{13}a_{32} + a_{12}a_{11}a_{33} - a_{12}a_{13}a_{31} - a_{13}a_{11}a_{32} + a_{13}a_{12}a_{31} \] Rearranging and combining like terms: \[ (-a_{11}a_{12}a_{33} + a_{12}a_{11}a_{33}) + (a_{11}a_{13}a_{32} - a_{13}a_{11}a_{32}) + (-a_{12}a_{13}a_{31} + a_{13}a_{12}a_{31}) = 0 \] 6. **Conclusion**: Therefore, the final result is: \[ a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 0 \] ### Final Answer: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)=

If A=[[1, 1, 0], [2, 1, 5],[1, 2, 1]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(21)+a_(21)A_(22)+a_(13)A_(23)=

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by A. a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) B. a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) C. a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13) D. a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)

If A=[{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}] and A_(ij) is co-factos of a_(ij) , then A is given by :

If A=[(3,2,4),(1,2,1),(3,2,6)] and A_(ij) are the cofactors of a_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13) is equal to

IF A=[(1,1,0),(2,1,5),(1,2,1)], then a_(11) A_(21) +a_(12)A_(22)+a_(13)A_(23) =

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

If A=[(1,2,1),(3,2,3),(2,1,2)] , then a_(11) A_(11)+a_(21) A_(21)+a_(31) A_(31)=

If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is denoted by A^(-1)=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]], then the value of a_(23) =

If A=[(1,1,0),(2,1,5),(1,2,1)] then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23) is equal to

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. Which of the following relations is incorrect?

    Text Solution

    |

  2. Which one of the following statements is true?

    Text Solution

    |

  3. If A=[[a(11), a(12), a(13)], [a(21), a(22), a(23)], [a(31), a(32), a(3...

    Text Solution

    |

  4. If A=[[1, 1, 0], [2, 1, 5],[1, 2, 1]] and a(ij) denote the cofactor ...

    Text Solution

    |

  5. If A=[[a(11), a(12), a(13)], [a(21), a(22), a(23)], [a(31), a(32), a(3...

    Text Solution

    |

  6. If A and B are non-singular square matrices of same order then adj(AB)...

    Text Solution

    |

  7. If A is a non-singular matrix of order n, then A(adj A)=

    Text Solution

    |

  8. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  9. If A is a ntimesn matrix and |A|ne0, then adj(adjA)=

    Text Solution

    |

  10. If A is a singular matrix of order n, then (adjA) is

    Text Solution

    |

  11. If A is a square matrix, then adj(A')-(adjA)'=

    Text Solution

    |

  12. If A is a non-singular matrix of order 3, (adjA)+A^(-1)=0, then |A|=

    Text Solution

    |

  13. If A is a non-singular matrix of order 3, then |adjA^(3)|=

    Text Solution

    |

  14. If D is the determinant of a square matrix A of order n, then the dete...

    Text Solution

    |

  15. Which of the following is/are incorrect? (i).Adjoint of symmetric mat...

    Text Solution

    |

  16. The inverse of a matrix A=[[a, b], [c, d]] is

    Text Solution

    |

  17. If A and B are non-singular matrices, then

    Text Solution

    |

  18. If A, B, C are invertible matrices, then (ABC)^(-1)=

    Text Solution

    |

  19. If D=diag(d1,d2,d3,…,dn)" where "d ne 0" for all " I = 1,2,…,n," then ...

    Text Solution

    |

  20. The inverse of a summetric matrix is

    Text Solution

    |