Home
Class 12
MATHS
If A=[[a(11), a(12), a(13)], [a(21), a(2...

If `A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and a_(ij)` denote the cofactor of element `A_(ij)`, then `a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)=`

A

`0`

B

`|A|`

C

`-|A|`

D

`2|A|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} \), where \( a_{ij} \) denotes the cofactor of the element \( A_{ij} \) of the matrix \( A \). ### Step-by-Step Solution: 1. **Understanding Cofactors**: The cofactor \( a_{ij} \) of an element \( A_{ij} \) in a matrix is given by: \[ a_{ij} = (-1)^{i+j} \cdot m_{ij} \] where \( m_{ij} \) is the minor of the element \( A_{ij} \). 2. **Identify the Matrix**: Given the matrix: \[ A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \] 3. **Calculate the Cofactors**: - For \( a_{11} \): \[ a_{11} = (-1)^{1+1} \cdot m_{11} = m_{11} \] where \( m_{11} = \begin{vmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{vmatrix} = A_{22}A_{33} - A_{23}A_{32} \] - For \( a_{12} \): \[ a_{12} = (-1)^{1+2} \cdot m_{12} = -m_{12} \] where \( m_{12} = \begin{vmatrix} A_{21} & A_{23} \\ A_{31} & A_{33} \end{vmatrix} = A_{21}A_{33} - A_{23}A_{31} \] - For \( a_{13} \): \[ a_{13} = (-1)^{1+3} \cdot m_{13} = m_{13} \] where \( m_{13} = \begin{vmatrix} A_{21} & A_{22} \\ A_{31} & A_{32} \end{vmatrix} = A_{21}A_{32} - A_{22}A_{31} \] 4. **Substituting the Cofactors**: Now substitute the cofactors into the expression: \[ a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = m_{11}A_{11} - m_{12}A_{12} + m_{13}A_{13} \] 5. **Expanding the Expression**: Substitute the values of \( m_{11}, m_{12}, \) and \( m_{13} \): \[ = (A_{22}A_{33} - A_{23}A_{32})A_{11} - (A_{21}A_{33} - A_{23}A_{31})A_{12} + (A_{21}A_{32} - A_{22}A_{31})A_{13} \] 6. **Recognizing the Determinant**: The expression \( a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} \) represents the determinant of matrix \( A \): \[ = \text{det}(A) \] ### Conclusion: Thus, the final result is: \[ a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = \text{det}(A) \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and A_(ij) denote the cofactor of element a_(ij) , then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23)=

If A=[[1, 1, 0], [2, 1, 5],[1, 2, 1]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(21)+a_(21)A_(22)+a_(13)A_(23)=

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by A. a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) B. a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) C. a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13) D. a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)

If A=[{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}] and A_(ij) is co-factos of a_(ij) , then A is given by :

If A=[(3,2,4),(1,2,1),(3,2,6)] and A_(ij) are the cofactors of a_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13) is equal to

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

If A=[(1,2,1),(3,2,3),(2,1,2)] , then a_(11) A_(11)+a_(21) A_(21)+a_(31) A_(31)=

IF A=[(1,1,0),(2,1,5),(1,2,1)], then a_(11) A_(21) +a_(12)A_(22)+a_(13)A_(23) =

If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is denoted by A^(-1)=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]], then the value of a_(23) =

Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[a(11), a(12), a(13)], [a(21), a(22), a(23)], [a(31), a(32), a(3...

    Text Solution

    |

  2. If A=[[1, 1, 0], [2, 1, 5],[1, 2, 1]] and a(ij) denote the cofactor ...

    Text Solution

    |

  3. If A=[[a(11), a(12), a(13)], [a(21), a(22), a(23)], [a(31), a(32), a(3...

    Text Solution

    |

  4. If A and B are non-singular square matrices of same order then adj(AB)...

    Text Solution

    |

  5. If A is a non-singular matrix of order n, then A(adj A)=

    Text Solution

    |

  6. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  7. If A is a ntimesn matrix and |A|ne0, then adj(adjA)=

    Text Solution

    |

  8. If A is a singular matrix of order n, then (adjA) is

    Text Solution

    |

  9. If A is a square matrix, then adj(A')-(adjA)'=

    Text Solution

    |

  10. If A is a non-singular matrix of order 3, (adjA)+A^(-1)=0, then |A|=

    Text Solution

    |

  11. If A is a non-singular matrix of order 3, then |adjA^(3)|=

    Text Solution

    |

  12. If D is the determinant of a square matrix A of order n, then the dete...

    Text Solution

    |

  13. Which of the following is/are incorrect? (i).Adjoint of symmetric mat...

    Text Solution

    |

  14. The inverse of a matrix A=[[a, b], [c, d]] is

    Text Solution

    |

  15. If A and B are non-singular matrices, then

    Text Solution

    |

  16. If A, B, C are invertible matrices, then (ABC)^(-1)=

    Text Solution

    |

  17. If D=diag(d1,d2,d3,…,dn)" where "d ne 0" for all " I = 1,2,…,n," then ...

    Text Solution

    |

  18. The inverse of a summetric matrix is

    Text Solution

    |

  19. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  20. The matrix having the same matrix as its inverse

    Text Solution

    |