Home
Class 12
MATHS
The inverse of a matrix A=[[a, b], [c, d...

The inverse of a matrix `A=[[a, b], [c, d]]` is

A

`[[d, -b], [-c, a]]`

B

`[[b, -a], [d, -c]]`

C

`(1)/(|A|)[[1, 0], [0, 1]]`

D

`(1)/(ad-bc)[[d, -b], [-c, a]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of a matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant \( \text{det}(A) \) of the matrix \( A \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] ### Step 2: Check if the Determinant is Non-Zero For the inverse to exist, the determinant must be non-zero. Thus, we need to ensure that: \[ ad - bc \neq 0 \] ### Step 3: Find the Adjoint of Matrix A The adjoint (or adjugate) of the matrix \( A \) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] ### Step 4: Use the Formula for the Inverse The inverse of the matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] ### Step 5: Write the Final Expression for the Inverse Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] ### Summary of the Inverse The final expression for the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{a}{ad - bc} \end{bmatrix} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

Inverse of the matrix [[ab,00,1]] is

Inverse matrix of the matrix A=[[5,42,1]] is

Knowledge Check

  • The inverse of a summetric matrix is

    A
    diagonal matrix
    B
    skew-symmetric matrix
    C
    symmetric matrix
    D
    not symmetric matrix
  • The order of the matrix [(a),(b),(c ),(d)] is ________.

    A
    `5xx1`
    B
    `2xx3`
    C
    `1xx4`
    D
    `4xx1`
  • If a, b, c are non-zero real numbers, then the inverse of the matrix A=[{:(a,0,0),(0,b,0),(0,0,c):}] is equal to

    A
    `[{:(a^(-1),0,0),(0,b^(-1),0),(0,0,c^(-1)):}]`
    B
    `(1)/(abc)[{:(a^(-1),0,0),(0,b^(-1),0),(0,0,c^(-1)):}]`
    C
    `(1)/(abc)[{:(1,0,0),(0,1,0),(0,0,1):}]`
    D
    `(1)/(abc)[{:(a,0,0),(0,b,0),(0,0,c):}]`
  • Similar Questions

    Explore conceptually related problems

    The inverse of a diagonal matrix is a:

    Using elementary transformation, find the inverse of the matrix A=[(a,b),(c,((1+bc)/a))] .

    " The inverse of the matrix "([1,0,0],[a,1,0],[b,c,1])" is "

    The inverse of matrix A, if A^(2) = 1, is ____.

    Find the inverse of the matrix [2-134]