Home
Class 12
MATHS
If D=diag(d1,d2,d3,…,dn)" where "d ne 0"...

If `D=diag(d_1,d_2,d_3,…,d_n)" where "d ne 0" for all " I = 1,2,…,n," then " D^(-1)`is equal to

A

`diag[d_(1)^(-1), d_(2)^(-1), …., d_(n)^(-1)]`

B

`I_(n)`

C

`D`

D

`-diag[d_(1)^(-1), d_(2)^(-1), …., d_(n)^(-1)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If D=diag [2, 3, 4] , then D^(-1)=

Find the inverse of each of the matrices given below : Let D= "diag" [d_(1),d_(2),d_(3)] where none of d_(1),d_(2),d_(3) is ), prove that D^(-1)="diag" [d_(1)^(-1),d_(2)^(-1),d_(3)^(-1)] .

If A^(20) = [(a,b),(c,d)] where A =[(1,1),(0,2)] then a+b+c+d is equal to

Statement 1: if D=diag[d_(1),d_(2),,d_(n)], then D^(-1)=diag[d_(1)^(-1),d_(2)^(-1),...,d_(n)^(-1)] Statement 2: if D=diag[d_(1),d_(2),,d_(n)], then D^(n)=diag[d_(1)^(n),d_(2)^(n),...,d_(n)^(n)]

If D=diag[d_(1),d_(2),...d_(n)], then prove that f(D)=diag[f(d_(1)),f(d_(2)),...,f(d_(n))], where f(x) is a polynomial with scalar coefficient.

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A and B are non-singular matrices, then

    Text Solution

    |

  2. If A, B, C are invertible matrices, then (ABC)^(-1)=

    Text Solution

    |

  3. If D=diag(d1,d2,d3,…,dn)" where "d ne 0" for all " I = 1,2,…,n," then ...

    Text Solution

    |

  4. The inverse of a summetric matrix is

    Text Solution

    |

  5. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  6. The matrix having the same matrix as its inverse

    Text Solution

    |

  7. Let A be a square matrix all of whose entries are integers. Then which...

    Text Solution

    |

  8. If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], then A^(5)=

    Text Solution

    |

  9. If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], then A^(6)=

    Text Solution

    |

  10. If A and B are 3times3 matrices such that AB=A and BA=B, then

    Text Solution

    |

  11. If A is a square matrix such that A^(2)=A, then (I-A)^(2)+A=

    Text Solution

    |

  12. If A, B, c are three square matrices such that AB=AC implies B=C, then...

    Text Solution

    |

  13. If A and B are two n-rowed square matrices such that AB=O and B is non...

    Text Solution

    |

  14. The number of 3 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  15. costheta[[costheta, sintheta], [-sintheta, costheta]]+sintheta[[sinthe...

    Text Solution

    |

  16. If [m,n][(m),(n)]=[25] and (m,n)

    Text Solution

    |

  17. If matrix A=[[1, -1], [1, 1]] then

    Text Solution

    |

  18. If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

    Text Solution

    |

  19. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  20. If M=[[1, 1, 1], [1, 1, 1], [1, 1, 1]], then M^(50)=

    Text Solution

    |