Home
Class 12
MATHS
If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], ...

If `A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]]`, then `A^(5)=`

A

`32A`

B

`16A`

C

`10A`

D

`5A`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^5 \) for the matrix \[ A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] we can follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] Calculating the product: - First row: - \( 2 \cdot 2 + 0 \cdot 0 + 0 \cdot 0 = 4 \) - \( 2 \cdot 0 + 0 \cdot 2 + 0 \cdot 0 = 0 \) - \( 2 \cdot 0 + 0 \cdot 0 + 0 \cdot 2 = 0 \) - Second row: - \( 0 \cdot 2 + 2 \cdot 0 + 0 \cdot 0 = 0 \) - \( 0 \cdot 0 + 2 \cdot 2 + 0 \cdot 0 = 4 \) - \( 0 \cdot 0 + 2 \cdot 0 + 0 \cdot 2 = 0 \) - Third row: - \( 0 \cdot 2 + 0 \cdot 0 + 2 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 2 + 2 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 0 + 2 \cdot 2 = 4 \) Thus, \[ A^2 = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] Calculating the product: - First row: - \( 4 \cdot 2 + 0 \cdot 0 + 0 \cdot 0 = 8 \) - \( 4 \cdot 0 + 0 \cdot 2 + 0 \cdot 0 = 0 \) - \( 4 \cdot 0 + 0 \cdot 0 + 0 \cdot 2 = 0 \) - Second row: - \( 0 \cdot 2 + 4 \cdot 0 + 0 \cdot 0 = 0 \) - \( 0 \cdot 0 + 4 \cdot 2 + 0 \cdot 0 = 8 \) - \( 0 \cdot 0 + 4 \cdot 0 + 0 \cdot 2 = 0 \) - Third row: - \( 0 \cdot 2 + 0 \cdot 0 + 4 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 2 + 4 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 0 + 4 \cdot 2 = 8 \) Thus, \[ A^3 = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} \] ### Step 3: Calculate \( A^4 \) Next, we calculate \( A^4 \): \[ A^4 = A^3 \cdot A = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] Calculating the product: - First row: - \( 8 \cdot 2 + 0 \cdot 0 + 0 \cdot 0 = 16 \) - \( 8 \cdot 0 + 0 \cdot 2 + 0 \cdot 0 = 0 \) - \( 8 \cdot 0 + 0 \cdot 0 + 0 \cdot 2 = 0 \) - Second row: - \( 0 \cdot 2 + 8 \cdot 0 + 0 \cdot 0 = 0 \) - \( 0 \cdot 0 + 8 \cdot 2 + 0 \cdot 0 = 16 \) - \( 0 \cdot 0 + 8 \cdot 0 + 0 \cdot 2 = 0 \) - Third row: - \( 0 \cdot 2 + 0 \cdot 0 + 8 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 2 + 8 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 0 + 8 \cdot 2 = 16 \) Thus, \[ A^4 = \begin{bmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix} \] ### Step 4: Calculate \( A^5 \) Finally, we calculate \( A^5 \): \[ A^5 = A^4 \cdot A = \begin{bmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] Calculating the product: - First row: - \( 16 \cdot 2 + 0 \cdot 0 + 0 \cdot 0 = 32 \) - \( 16 \cdot 0 + 0 \cdot 2 + 0 \cdot 0 = 0 \) - \( 16 \cdot 0 + 0 \cdot 0 + 0 \cdot 2 = 0 \) - Second row: - \( 0 \cdot 2 + 16 \cdot 0 + 0 \cdot 0 = 0 \) - \( 0 \cdot 0 + 16 \cdot 2 + 0 \cdot 0 = 32 \) - \( 0 \cdot 0 + 16 \cdot 0 + 0 \cdot 2 = 0 \) - Third row: - \( 0 \cdot 2 + 0 \cdot 0 + 16 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 2 + 16 \cdot 0 = 0 \) - \( 0 \cdot 0 + 0 \cdot 0 + 16 \cdot 2 = 32 \) Thus, \[ A^5 = \begin{bmatrix} 32 & 0 & 0 \\ 0 & 32 & 0 \\ 0 & 0 & 32 \end{bmatrix} \] ### Final Answer Therefore, \[ A^5 = 32 \cdot I = 32 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 32 & 0 & 0 \\ 0 & 32 & 0 \\ 0 & 0 & 32 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]] , then A^(6)=

If A=[[ 2 ,0, 0],[ 0, 2, 0],[ 0, 0, 2]] then A^(2) is equal to:

If A=[[0, 1, -2], [-1, 0, 5], [2, -5, 0]] , then

If A=[[1,0,0],[0,5,0],[0,0,2]] then | adj "A|=

If the matrix A=[[2,0,2] , [0,2,0] , [2,0,02]] then A^n=[[a,0,0] , [0,a,0] , [b,0,a]], n in N where

If A = {:[(2,0,0),(0,2,0),(0,0,2)]:}, then A^(6) = .........

A =[[0,0],[0,0]] and B=[[1,0],[0,2]]

3. If A=([-2,0],[0,-2]) , then A^(5) is

If A=([3,0,0],[4,5,0],[2,1,6]) then A^(-1)=

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The matrix having the same matrix as its inverse

    Text Solution

    |

  2. Let A be a square matrix all of whose entries are integers. Then which...

    Text Solution

    |

  3. If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], then A^(5)=

    Text Solution

    |

  4. If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], then A^(6)=

    Text Solution

    |

  5. If A and B are 3times3 matrices such that AB=A and BA=B, then

    Text Solution

    |

  6. If A is a square matrix such that A^(2)=A, then (I-A)^(2)+A=

    Text Solution

    |

  7. If A, B, c are three square matrices such that AB=AC implies B=C, then...

    Text Solution

    |

  8. If A and B are two n-rowed square matrices such that AB=O and B is non...

    Text Solution

    |

  9. The number of 3 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  10. costheta[[costheta, sintheta], [-sintheta, costheta]]+sintheta[[sinthe...

    Text Solution

    |

  11. If [m,n][(m),(n)]=[25] and (m,n)

    Text Solution

    |

  12. If matrix A=[[1, -1], [1, 1]] then

    Text Solution

    |

  13. If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

    Text Solution

    |

  14. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  15. If M=[[1, 1, 1], [1, 1, 1], [1, 1, 1]], then M^(50)=

    Text Solution

    |

  16. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]], then A^(10)=

    Text Solution

    |

  17. If A is a square matrix, then A+A^(T) is

    Text Solution

    |

  18. For any square matrix A,A A^(T) is a

    Text Solution

    |

  19. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  20. If A is a square matrix, A' its transpose, then (1)/(2)(A-A') is …. Ma...

    Text Solution

    |