Home
Class 12
MATHS
If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], ...

If `A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]]`, then `A^(6)=`

A

`6A`

B

`12A`

C

`16A`

D

`32A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( A^6 \) for the matrix \( A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \), we can follow these steps: ### Step 1: Factor out the scalar from the matrix We can factor out the scalar \( 2 \) from the matrix \( A \): \[ A = 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 2I \] where \( I \) is the identity matrix. **Hint:** Remember that you can factor out a scalar from a diagonal matrix by taking it out of each diagonal entry. ### Step 2: Raise the matrix to the power of 6 Now, we can express \( A^6 \) as: \[ A^6 = (2I)^6 \] **Hint:** When raising a product to a power, remember to apply the power to both the scalar and the matrix. ### Step 3: Apply the power to the scalar and the identity matrix Using the property of exponents, we can separate the scalar and the identity matrix: \[ A^6 = 2^6 I^6 \] **Hint:** The identity matrix raised to any power remains the identity matrix. ### Step 4: Simplify the expression Since \( I^6 = I \), we have: \[ A^6 = 2^6 I \] Calculating \( 2^6 \): \[ 2^6 = 64 \] Thus, we can write: \[ A^6 = 64I \] **Hint:** Always calculate the power of the scalar carefully, as it contributes to the final result. ### Final Result The final result is: \[ A^6 = 64 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{bmatrix} \] ### Summary The answer is: \[ A^6 = \begin{bmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]] , then A^(5)=

If A=[[ 2 ,0, 0],[ 0, 2, 0],[ 0, 0, 2]] then A^(2) is equal to:

If A=[[2,0,0],[0,2,0],[0,0,2]] ,then A^(5) is

If A=[[2,0,0],[0,2,0],[0,0,2]] , then A^(5) is equal to

If A=[[2,0,0],[0,2,0],[0,0,2]] then A^(5) is equals to

If A=[[1,0,0],[0,5,0],[0,0,2]] then | adj "A|=

If the matrix A=[[2,0,2] , [0,2,0] , [2,0,02]] then A^n=[[a,0,0] , [0,a,0] , [b,0,a]], n in N where

A =[[0,0],[0,0]] and B=[[1,0],[0,2]]

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. Let A be a square matrix all of whose entries are integers. Then which...

    Text Solution

    |

  2. If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], then A^(5)=

    Text Solution

    |

  3. If A=[[2, 0, 0], [0, 2, 0], [0, 0, 2]], then A^(6)=

    Text Solution

    |

  4. If A and B are 3times3 matrices such that AB=A and BA=B, then

    Text Solution

    |

  5. If A is a square matrix such that A^(2)=A, then (I-A)^(2)+A=

    Text Solution

    |

  6. If A, B, c are three square matrices such that AB=AC implies B=C, then...

    Text Solution

    |

  7. If A and B are two n-rowed square matrices such that AB=O and B is non...

    Text Solution

    |

  8. The number of 3 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  9. costheta[[costheta, sintheta], [-sintheta, costheta]]+sintheta[[sinthe...

    Text Solution

    |

  10. If [m,n][(m),(n)]=[25] and (m,n)

    Text Solution

    |

  11. If matrix A=[[1, -1], [1, 1]] then

    Text Solution

    |

  12. If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

    Text Solution

    |

  13. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  14. If M=[[1, 1, 1], [1, 1, 1], [1, 1, 1]], then M^(50)=

    Text Solution

    |

  15. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]], then A^(10)=

    Text Solution

    |

  16. If A is a square matrix, then A+A^(T) is

    Text Solution

    |

  17. For any square matrix A,A A^(T) is a

    Text Solution

    |

  18. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  19. If A is a square matrix, A' its transpose, then (1)/(2)(A-A') is …. Ma...

    Text Solution

    |

  20. If A and B are symmetric matrices of same order, then which one of the...

    Text Solution

    |