Home
Class 12
MATHS
If A=[[4, -1], [-1, k]] such that A^(2)-...

If `A=[[4, -1], [-1, k]]` such that `A^(2)-6A+7I=0 and k=`

A

`1`

B

`3`

C

`2`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the matrix \( A = \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix} \) satisfies the equation \( A^2 - 6A + 7I = 0 \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix} \cdot \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ 4 \cdot 4 + (-1) \cdot (-1) = 16 + 1 = 17 \] - First row, second column: \[ 4 \cdot (-1) + (-1) \cdot k = -4 - k \] - Second row, first column: \[ (-1) \cdot 4 + k \cdot (-1) = -4 - k \] - Second row, second column: \[ (-1) \cdot (-1) + k \cdot k = 1 + k^2 \] Thus, we have: \[ A^2 = \begin{bmatrix} 17 & -4 - k \\ -4 - k & 1 + k^2 \end{bmatrix} \] ### Step 2: Set up the equation \( A^2 - 6A + 7I = 0 \) We know: \[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] So, \[ 7I = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} \] Now, substituting \( A \) and \( I \) into the equation: \[ A^2 - 6A + 7I = 0 \] Substituting \( A^2 \) and \( 6A \): \[ \begin{bmatrix} 17 & -4 - k \\ -4 - k & 1 + k^2 \end{bmatrix} - 6 \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = 0 \] Calculating \( 6A \): \[ 6A = \begin{bmatrix} 24 & -6 \\ -6 & 6k \end{bmatrix} \] ### Step 3: Combine the matrices Now, we combine: \[ \begin{bmatrix} 17 & -4 - k \\ -4 - k & 1 + k^2 \end{bmatrix} - \begin{bmatrix} 24 & -6 \\ -6 & 6k \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = 0 \] Calculating each element: - First row, first column: \[ 17 - 24 + 7 = 0 \] - First row, second column: \[ -4 - k + 6 = 2 - k \] - Second row, first column: \[ -4 - k + 6 = 2 - k \] - Second row, second column: \[ 1 + k^2 - 6k + 7 = k^2 - 6k + 8 \] ### Step 4: Set each element to zero From the above, we have: 1. \( 0 = 0 \) (first element) 2. \( 2 - k = 0 \) (second element) 3. \( 2 - k = 0 \) (third element) 4. \( k^2 - 6k + 8 = 0 \) (fourth element) From \( 2 - k = 0 \): \[ k = 2 \] ### Step 5: Verify \( k = 2 \) in the quadratic equation Substituting \( k = 2 \) into the quadratic equation: \[ k^2 - 6k + 8 = 0 \rightarrow 2^2 - 6 \cdot 2 + 8 = 4 - 12 + 8 = 0 \] Since both conditions are satisfied, we conclude: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

If a and b are vectors such that |a+b|=sqrt(29) and a xx(2i+3j+4k)=(2i+3j+4k)xx b, then a possivalue of (a+b)*(-7i+2j+3k) is

(A) "4],[" 2.If " A=[[k,1,0],[3,5]]" is a singular matrix,then the value of "k" is equal to: "],[[" (A) "0," (B) "6," (C) "-6," (D) "6]]

Let A be a square matrix of order 3 satisfies A^(3)-6A^(2)+7A-8I=0 & B=A-2I If |A|=8 & |"adj"(I-2A^(-1))|=K, then [K] ………where [.] represents G.I.F

If a=(1)/(7)(2hat(i)+3hat(j)+6hat(k)): b=(1)/(7)(6hat(i)+2hat(j)-3hat(k)): c=c_1hat(i)+c_2hat(j)+c_2hat(k) and matrix A=[[(2)/(7), (3)/(7), (6)/(7)], [(6)/(7), (2)/(7), -(3)/(7)], [c_1, c_2, c_3]] and AT^(T)=I , then c

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] and A^(3)-6A^(2)+7A+kI_(3)=O , find k.

If A[(1,0,2),(0,2,1),(2,0,3)] and A^(3)-6A^(2)+7A+kI_(3)=O find k.

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If [m,n][(m),(n)]=[25] and (m,n)

    Text Solution

    |

  2. If matrix A=[[1, -1], [1, 1]] then

    Text Solution

    |

  3. If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

    Text Solution

    |

  4. Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:}. The only correct statement abo...

    Text Solution

    |

  5. If M=[[1, 1, 1], [1, 1, 1], [1, 1, 1]], then M^(50)=

    Text Solution

    |

  6. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]], then A^(10)=

    Text Solution

    |

  7. If A is a square matrix, then A+A^(T) is

    Text Solution

    |

  8. For any square matrix A,A A^(T) is a

    Text Solution

    |

  9. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  10. If A is a square matrix, A' its transpose, then (1)/(2)(A-A') is …. Ma...

    Text Solution

    |

  11. If A and B are symmetric matrices of same order, then which one of the...

    Text Solution

    |

  12. If A is a square matrix of order n and |A|=D, |adjA|=D', then

    Text Solution

    |

  13. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  14. Let A, B and C be ntimesn matrices, which one of the following is a co...

    Text Solution

    |

  15. If A=[[0, 1, -2], [-1, 0, 5], [2, -5, 0]], then

    Text Solution

    |

  16. If A=[[1, 0], [-1, 3]], then R1 harr R2 on A gives

    Text Solution

    |

  17. If A=[[3, 1], [4, 5]], then R1 harrR2 on A gives

    Text Solution

    |

  18. If A=[[5, 4], [1, 3]], then C1 harr C2 on A gives

    Text Solution

    |

  19. If A=[[1, 0, 2], [2, 4, 5]], then 3R1 on A gives

    Text Solution

    |

  20. If A=[[1, 2, -1], [0, 1, 3]], then 2C2 on A gives

    Text Solution

    |