Home
Class 12
MATHS
If A=[[0, 1, -2], [-1, 0, 5], [2, -5, 0]...

If `A=[[0, 1, -2], [-1, 0, 5], [2, -5, 0]]`, then

A

`A'=-A`

B

`A'=A`

C

`A'=2A`

D

`A'=-2A`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the matrix \( A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix} \), we will check if it is a skew-symmetric matrix and verify its transpose. ### Step 1: Check if the matrix is skew-symmetric A matrix \( A \) is skew-symmetric if \( A^T = -A \) and all diagonal elements are zero. **Diagonal Elements:** - The diagonal elements of \( A \) are \( 0, 0, 0 \) (which are all zero). **Off-diagonal Elements:** - For the matrix to be skew-symmetric, the following conditions must hold: - \( A_{12} = -A_{21} \) (i.e., \( 1 = -(-1) \)) - \( A_{13} = -A_{31} \) (i.e., \( -2 = -2 \)) - \( A_{23} = -A_{32} \) (i.e., \( 5 = -(-5) \)) Since all these conditions are satisfied, \( A \) is indeed a skew-symmetric matrix. ### Step 2: Calculate the transpose of matrix \( A \) To find the transpose \( A^T \), we swap the rows and columns of \( A \): \[ A^T = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -5 \\ -2 & 5 & 0 \end{bmatrix} \] ### Step 3: Calculate \(-A\) Now, we calculate \(-A\): \[ -A = -\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -5 \\ -2 & 5 & 0 \end{bmatrix} \] ### Step 4: Compare \( A^T \) and \(-A\) Now we compare \( A^T \) and \(-A\): \[ A^T = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -5 \\ -2 & 5 & 0 \end{bmatrix} \] \[ -A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & -5 \\ -2 & 5 & 0 \end{bmatrix} \] Since \( A^T = -A \), we conclude that \( A \) is skew-symmetric. ### Final Conclusion The matrix \( A \) is a skew-symmetric matrix, and we have verified that \( A^T = -A \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,0,1] , [2,1,3] , [1,-1,0]] then (A^2-5A)=

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find value of A^(2)-5A+6I

If A=[[2,0,1],[2,1,3],[1,-1,0]] , then find (A^(2)-5A)

If A=[[-3,1,2],[0,0,1],[-3,5,0]] ,then 8|A|

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[[2,5,6] , [0,1,2]], B =[[6,1] , [0,4] , [5,7]] then verify that (AB)'=B'A'

If A=[[-5,-8,0],[3,5,0],[1,2,-1]], then transpose of A is

If A=[[-5,-8,0],[3,5,0],[1,2,-1]], then A' is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If adjB=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P...

    Text Solution

    |

  2. Let A, B and C be ntimesn matrices, which one of the following is a co...

    Text Solution

    |

  3. If A=[[0, 1, -2], [-1, 0, 5], [2, -5, 0]], then

    Text Solution

    |

  4. If A=[[1, 0], [-1, 3]], then R1 harr R2 on A gives

    Text Solution

    |

  5. If A=[[3, 1], [4, 5]], then R1 harrR2 on A gives

    Text Solution

    |

  6. If A=[[5, 4], [1, 3]], then C1 harr C2 on A gives

    Text Solution

    |

  7. If A=[[1, 0, 2], [2, 4, 5]], then 3R1 on A gives

    Text Solution

    |

  8. If A=[[1, 2, -1], [0, 1, 3]], then 2C2 on A gives

    Text Solution

    |

  9. If A=[[1, 0, 2], [2, 4, 5]] and B=[[1, 2, -1], [0, 1, 3]], then the ad...

    Text Solution

    |

  10. If A=[[1, -1, 3], [2, 3, 4]], then R1 to R1 -R2 on A gives

    Text Solution

    |

  11. If A=[[1, 0, 2], [2, 3, 4]], then C1 to C1 +C3 on A gives

    Text Solution

    |

  12. If A=[[1, 2, -1], [3, -2, 5]], then first R1 harr R2 and then C1 to C1...

    Text Solution

    |

  13. IfA==[[1, -1, 3], [2, 1, 0], [3, 3, 1]], then first 3R3 and then C3 to...

    Text Solution

    |

  14. The co-factor of -4 and 9 in [[-1, -2, 3], [-4, -5, -6], [-7, 8, 9]] ...

    Text Solution

    |

  15. The co-factor of elements of the second row of [[1, 2, 3], [-4, 3, 6],...

    Text Solution

    |

  16. If A=[[5, 6, 3], [-4, 3, 2], [-4, -7, 3]], then co-factor of the eleme...

    Text Solution

    |

  17. The co-factors of the elements of second row of the [[1, 3, -2], [4, -...

    Text Solution

    |

  18. The co-factors of the elements of third row of [[1, -1, 2], [3, 1, 4],...

    Text Solution

    |

  19. The co-factors of the elements of the first column of [[1, 1, -2], [2,...

    Text Solution

    |

  20. The co-factors of the elements of third column of [[4, 3, 1], [1, 3, 2...

    Text Solution

    |