Home
Class 12
MATHS
IfA==[[1, -1, 3], [2, 1, 0], [3, 3, 1]],...

If`A==[[1, -1, 3], [2, 1, 0], [3, 3, 1]]`, then first `3R_3` and then `C_3 to C_3 +2C_2` on A gives

A

`[[1, -1, 1], [2, 1, 2], [9, 9, 21]]`

B

`[[1,-1, 3], [2, 1, 0], [9, 9, 3]]`

C

`[[1, -1, 1], [2, 1, 2], [3, 3, 7]]`

D

`[[1, -1, 6], [2, 1, 3], [3, 3, 12]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will perform the operations on the matrix \( A \) as described. Given: \[ A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{bmatrix} \] ### Step 1: Perform the operation \( R_3 \to 3R_3 \) This means we will multiply every element in the third row \( R_3 \) by 3. Calculating \( 3R_3 \): \[ R_3 = [3, 3, 1] \implies 3R_3 = [3 \cdot 3, 3 \cdot 3, 3 \cdot 1] = [9, 9, 3] \] Now, we replace the third row in matrix \( A \) with \( 3R_3 \): \[ A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 9 & 9 & 3 \end{bmatrix} \] ### Step 2: Perform the operation \( C_3 \to C_3 + 2C_2 \) This means we will add 2 times the second column \( C_2 \) to the third column \( C_3 \). Calculating \( 2C_2 \): \[ C_2 = \begin{bmatrix} -1 \\ 1 \\ 9 \end{bmatrix} \implies 2C_2 = \begin{bmatrix} 2 \cdot -1 \\ 2 \cdot 1 \\ 2 \cdot 9 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ 18 \end{bmatrix} \] Now, we add \( 2C_2 \) to \( C_3 \): \[ C_3 = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} \implies C_3 + 2C_2 = \begin{bmatrix} 3 + (-2) \\ 0 + 2 \\ 3 + 18 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 21 \end{bmatrix} \] Now, we replace the third column in the matrix with the new values: \[ A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 9 & 9 & 21 \end{bmatrix} \] ### Final Result The final matrix after performing the operations is: \[ \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 9 & 9 & 21 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[1, 2, -1], [3, -2, 5]] , then first R_1 harr R_2 and then C_1 to C_1+2C_3 on A gives

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

If A=[[1, 2, -1], [0, 1, 3]] , then 2C_2 on A gives

If A=[[1, 0, 2], [2, 3, 4]] , then C_1 to C_1 +C_3 on A gives

Find the addition of two new matrices A=[[1,-1,32,1,03,3,1]],3R_(3) and then C_(3)+2C_(2)

[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1) gives

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

If A=[(2,-3,3),(2,2,3),(3,-2,2)] then C_(2)+2C_(1) and "then" R_(1)+R_(3) gives

" If "A(1,2,3)," B "(2,3,1),C(3,1,2)" then the length of the altitude through "C" is "

If A=[[2,3,4],[-3,0,2]], B=[[3,-4,-5],[1,2,1]] and C=[[5,-1,2],[7,0,3]] , find the matrix X such that 2A+3B=X+C

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 0, 2], [2, 3, 4]], then C1 to C1 +C3 on A gives

    Text Solution

    |

  2. If A=[[1, 2, -1], [3, -2, 5]], then first R1 harr R2 and then C1 to C1...

    Text Solution

    |

  3. IfA==[[1, -1, 3], [2, 1, 0], [3, 3, 1]], then first 3R3 and then C3 to...

    Text Solution

    |

  4. The co-factor of -4 and 9 in [[-1, -2, 3], [-4, -5, -6], [-7, 8, 9]] ...

    Text Solution

    |

  5. The co-factor of elements of the second row of [[1, 2, 3], [-4, 3, 6],...

    Text Solution

    |

  6. If A=[[5, 6, 3], [-4, 3, 2], [-4, -7, 3]], then co-factor of the eleme...

    Text Solution

    |

  7. The co-factors of the elements of second row of the [[1, 3, -2], [4, -...

    Text Solution

    |

  8. The co-factors of the elements of third row of [[1, -1, 2], [3, 1, 4],...

    Text Solution

    |

  9. The co-factors of the elements of the first column of [[1, 1, -2], [2,...

    Text Solution

    |

  10. The co-factors of the elements of third column of [[4, 3, 1], [1, 3, 2...

    Text Solution

    |

  11. If A=[[1, 2, 3], [2, 3, 2], [1, 2, 2]], then

    Text Solution

    |

  12. Matrix of co-factors of the matrix [[-1, 2],[ -3, 4]] is

    Text Solution

    |

  13. Matrix of co-factors of the matrix [[1,2],[ 3, 4]] is

    Text Solution

    |

  14. Matrix of co-factors of the matrix [[1, 3],[ 4, -1]] is

    Text Solution

    |

  15. Matrix of co-factors of the matrix [[1, -1, 2], [-2, 3, 5], [-2, 0, -1...

    Text Solution

    |

  16. Matrix of co-factors of the matrix [[1, 0, 2], [-2, 1, 3], [0, 3, -5]]...

    Text Solution

    |

  17. If A=[[2, 1], [4, 2]], then

    Text Solution

    |

  18. If A=[[1, 0],[0, 1]], then

    Text Solution

    |

  19. If A=[[1, 1],[1, 1]], then

    Text Solution

    |

  20. If A=[[1, 2], [3, 3]], then

    Text Solution

    |