Home
Class 12
MATHS
If A=[[costheta, sintheta], [-sintheta, ...

If `A=[[costheta, sintheta], [-sintheta, costheta]]`, then

A

A is singular

B

`A^(-1)` exists

C

`A^(-1)` does not exists

D

`A^(-1)` is singular

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A \) given by: \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] We will determine whether the matrix is singular or not by calculating its determinant. ### Step 1: Calculate the Determinant of Matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = \cos \theta \) - \( b = \sin \theta \) - \( c = -\sin \theta \) - \( d = \cos \theta \) Substituting these values into the determinant formula gives: \[ \text{det}(A) = (\cos \theta)(\cos \theta) - (\sin \theta)(-\sin \theta) \] This simplifies to: \[ \text{det}(A) = \cos^2 \theta + \sin^2 \theta \] ### Step 2: Use the Pythagorean Identity From trigonometry, we know that: \[ \cos^2 \theta + \sin^2 \theta = 1 \] Thus, we have: \[ \text{det}(A) = 1 \] ### Step 3: Determine if the Matrix is Singular A matrix is singular if its determinant is equal to zero. Since we found that: \[ \text{det}(A) = 1 \neq 0 \] This means that the matrix \( A \) is **not singular**. ### Step 4: Determine if the Inverse Exists Since the matrix is not singular, it is invertible. Therefore, the inverse of matrix \( A \) exists. ### Step 5: Conclusion Based on the analysis, we conclude: - The matrix \( A \) is **not singular**. - The inverse of matrix \( A \) **exists**. ### Final Answer The correct option is that **the inverse of \( A \) exists**. ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If I= [[1,0],[0,1]] , J = [[0,1],[-1,0]] and B = [[costheta, sintheta],[-sintheta, costheta]] , then B= (A) Icostheta+Jsintheta (B) Icostheta-Jsintheta (C) Isintheta+Jcostheta (D) -Icostheta+Jsintheta

If A=[[costheta,sintheta],[-sintheta,costheta]] and beta=A^4+A then determinant of beta=

costheta[[costheta, sintheta], [-sintheta, costheta]]+sintheta[[sintheta, -costheta], [costheta, sintheta]]=

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

Let A={:[(costheta,-sintheta),(-sintheta,-costheta)]:} then inverse of A is

If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=

If A=[(costheta,-sintheta),(sintheta,costheta)] find the values of theta satisfying the equation A^(T)+A =" "I _(2).

The inverse of the matrix [[costheta, -sintheta, 0], [sintheta, costheta, 0], [0, 0, 1]] is

Then inverse of the matrix [[1, 0, 0], [0, costheta, sintheta], [0, sintheta, -costheta]] is