Home
Class 12
MATHS
If A=[[3, 4, 3], [1, 1, 0], [1, 4, 5]], ...

If `A=[[3, 4, 3], [1, 1, 0], [1, 4, 5]]`, then

A

A is singular

B

A is lower triangular matrix

C

A is invertible

D

A is not invertible

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]] , then [[12, 4, -6], [3, 1, 14], [20, -14, -10]] is

If A = [[-1, 2 ,3],[-1, 0, 2],[1, -3, 1]] and B = [[4,5,6],[-1, 0, 1], [2,1,2]], find 4A-3B

Show that(i) [[5,-1],[ 6 ,7]][[2, 1],[ 3 ,4]]!=[[2, 1],[ 3, 4]][[5,-1],[ 6, 7]] (ii) [[1, 2, 3],[ 0, 1, 0],[ 1, 1, 0]][[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]]!=[[-1, 1, 0],[ 0,-1, 1],[ 2, 3, 4]][[1 ,2 ,3],[ 0, 1, 0],[ 1, 1, 0]]

If A=[[1,2,3],[0,-1,4],[3,1,5]] and B=[[2,-1,0],[1,4,3],[3,0,-2]], verify that (AB)^-1=B^-1A^-1.

If A=[[3,1],[4,0]],B=[[4,0],[2,5]] ,verify that (AB)^(-1)=B^(-1)A^(-1)

If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

If A=([3,0,0],[4,5,0],[2,1,6]) then A^(-1)=

Compute the indicated products.(i) [[a, b],[-b ,a]][[a,-b],[b, a]] (ii) [[1],[ 2],[ 3]][[2, 3 ,4]] (iii) [[1,-2],[ 2 ,3]] [[1 ,2, 3],[ 2, 3 ,1]] (iv) [[2, 3 ,4 ],[3, 4 ,5],[ 4, 5, 6]][[1,-3, 5],[ 0, 2, 4],[ 3, 0, 5]] (v) [[2,1],[3,2],[-1,1]] [[1, 0, 1],[-1, 2 ,1]] (vi) [[3,-1, 3],[1,0,2]] [[2 ,-3],[ 1, 0],[ 3, 1]]

If A=[[1,-2,3],[-4,2,5]] , B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'