Home
Class 12
MATHS
If A=[[1, 2, 3], [3, 4, 5], [4, 6, 8]], ...

If `A=[[1, 2, 3], [3, 4, 5], [4, 6, 8]]`, then

A

A is non-singular

B

`A^(-1)` does not exists

C

`A^(-1)` exists

D

`A A^(-1)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the properties of the matrix \( A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{bmatrix} \). Specifically, we will find the determinant of the matrix to check if it is singular or non-singular, and based on that, we will evaluate the options provided. ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{bmatrix} \), we have: - \( a = 1, b = 2, c = 3 \) - \( d = 3, e = 4, f = 5 \) - \( g = 4, h = 6, i = 8 \) Substituting these values into the determinant formula: \[ \text{det}(A) = 1(4 \cdot 8 - 5 \cdot 6) - 2(3 \cdot 8 - 5 \cdot 4) + 3(3 \cdot 6 - 4 \cdot 4) \] Calculating each term: 1. \( 4 \cdot 8 = 32 \) 2. \( 5 \cdot 6 = 30 \) 3. \( 3 \cdot 8 = 24 \) 4. \( 5 \cdot 4 = 20 \) 5. \( 3 \cdot 6 = 18 \) 6. \( 4 \cdot 4 = 16 \) Now substituting these back into the determinant calculation: \[ \text{det}(A) = 1(32 - 30) - 2(24 - 20) + 3(18 - 16) \] Calculating each part: - \( 32 - 30 = 2 \) - \( 24 - 20 = 4 \) - \( 18 - 16 = 2 \) Now substituting these results: \[ \text{det}(A) = 1(2) - 2(4) + 3(2) \] \[ = 2 - 8 + 6 \] \[ = 2 - 8 + 6 = 0 \] ### Conclusion Since the determinant of matrix \( A \) is \( 0 \), this indicates that the matrix is singular. Therefore, the options can be evaluated as follows: 1. **Option 1**: A is non-singular - **False** 2. **Option 2**: A inverse does not exist - **True** 3. **Option 3**: A inverse exists - **False** 4. **Option 4**: A into A inverse is equal to I - **False** ### Final Answer The correct option is: **A inverse does not exist**. ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

Let U= {1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 4}, B = {2, 4, 6, 8) and C={3, 4, 5, 6}. Find A'

Let U= {1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 4}, B = {2, 4, 6, 8) and C={3, 4, 5, 6}. Find ( A uu B)'

Let U= {1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 4}, B = {2, 4, 6, 8) and C={3, 4, 5, 6}. Find (A')'

Let U= {1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 4}, B = {2, 4, 6, 8) and C={3, 4, 5, 6}. Find (B-C)'

Find the mode of the observations 8, 2, 3, 4, 6, 3, 2, 4, 5, 4, 1, 1, 4, 6, and 8.

Find the mean of the given data 8, 2, 3, 4, 1, 3, 2, 4, 5, 4, 2, 3, 4, 6, 9

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = { 2, 4, 6, 8} and C = {3, 4, 5, 6} then find the value of B nn C' .

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = { 2, 4, 6, 8} and C = {3, 4, 5, 6} then find the value of (B -C)' .

If A= {1,2,3,4,5,6} and B= {3,4,5,6,7,8,} , then (A-B) uu(B-A) = …………….

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[3, 4, 3], [1, 1, 0], [1, 4, 5]], then

    Text Solution

    |

  2. If A=[[1, 2, 3], [2, -1, 3], [1, 2, 3]], then

    Text Solution

    |

  3. If A=[[1, 2, 3], [3, 4, 5], [4, 6, 8]], then

    Text Solution

    |

  4. If [[sin((pi)/(2)), cos((pi)/(3))], [2tan((pi)/(4)), 2k]] is not inver...

    Text Solution

    |

  5. The matrix [[lambda, -1, 4], [-3, 0, 2], [-1, 1, 2]] is invertible, if

    Text Solution

    |

  6. The matrix [[1, a, 2], [1, 2, 5], [2, 1, 1]] is not invertible, if a=

    Text Solution

    |

  7. If the inverse of [[1, 2, x], [4, -1, 7], [2, 4, -6]] does not exist, ...

    Text Solution

    |

  8. If [[x, 1, 1], [2, 3, 4], [1, 1, 1]] has no inverse, then x=

    Text Solution

    |

  9. Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for

    Text Solution

    |

  10. If k is a scalar and I is unit matrix of order 3, then adj(kI)=

    Text Solution

    |

  11. If a=[[-2, 6], [-5, 7]], then adjA=

    Text Solution

    |

  12. If A=[[2, -3], [3, 5]], then adjA=

    Text Solution

    |

  13. If A=[[2, -3], [4, 1]], then adjA=

    Text Solution

    |

  14. If A=[[4, 2], [3, 4]], then |adjA|=

    Text Solution

    |

  15. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  16. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  17. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  18. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  19. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  20. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |