Home
Class 12
MATHS
If [[sin((pi)/(2)), cos((pi)/(3))], [2ta...

If `[[sin((pi)/(2)), cos((pi)/(3))], [2tan((pi)/(4)), 2k]]` is not invertible, then k=

A

`2`

B

`(1)/(2)`

C

`1`

D

`3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A-[[sin((3 pi)/(2)),sin pi,2],[cos((2 pi)/(3)),1,k],[cos pi,-4,tan((pi)/(4))]] is a singular matrix, then the value of k is

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

"sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)+(1)/(2) is:

sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)-(1)/(2)(pi)/(4)=-(1)/(2)

4sin ((pi) / (6)) sin ^ (2) ((pi) / (3)) + 3cos ((pi) / (3)) tan ((pi) / (4)) + cos e ^ ( 2) ((pi) / (2)) = 2sec ^ (2) ((pi) / (4))

Find the value of the following :- {:((a)sin((pi)/(6)),(b)cos ((pi)/(4))), ((c)tan((pi)/(3)),(d)cos ((pi)/(2))), ((e)cot ((3pi)/(4)),(f)sin((5pi)/(6))),((g)sin pi,(h)cos pi),((i)sin((pi)/(2)),(j)sin((3pi)/(2))),((k)cos((3pi)/(2)),):}

The period of f(x)=(sin(pi x))/(2)+2(cos(pi x))/(3)-(tan(pi x))/(4) is

sin (pi/2) = 2 sin(pi/4) cos (pi/4)

The value of 2sin^(2)((pi)/(3))-cos^(2)((pi)/(6))+tan^(2)(pi/6) is equal to ....

Prove that: (sin^(2)pi)/(6)+(cos^(2)pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2, 3], [2, -1, 3], [1, 2, 3]], then

    Text Solution

    |

  2. If A=[[1, 2, 3], [3, 4, 5], [4, 6, 8]], then

    Text Solution

    |

  3. If [[sin((pi)/(2)), cos((pi)/(3))], [2tan((pi)/(4)), 2k]] is not inver...

    Text Solution

    |

  4. The matrix [[lambda, -1, 4], [-3, 0, 2], [-1, 1, 2]] is invertible, if

    Text Solution

    |

  5. The matrix [[1, a, 2], [1, 2, 5], [2, 1, 1]] is not invertible, if a=

    Text Solution

    |

  6. If the inverse of [[1, 2, x], [4, -1, 7], [2, 4, -6]] does not exist, ...

    Text Solution

    |

  7. If [[x, 1, 1], [2, 3, 4], [1, 1, 1]] has no inverse, then x=

    Text Solution

    |

  8. Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for

    Text Solution

    |

  9. If k is a scalar and I is unit matrix of order 3, then adj(kI)=

    Text Solution

    |

  10. If a=[[-2, 6], [-5, 7]], then adjA=

    Text Solution

    |

  11. If A=[[2, -3], [3, 5]], then adjA=

    Text Solution

    |

  12. If A=[[2, -3], [4, 1]], then adjA=

    Text Solution

    |

  13. If A=[[4, 2], [3, 4]], then |adjA|=

    Text Solution

    |

  14. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  15. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  16. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  17. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  18. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  19. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  20. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |