Home
Class 12
MATHS
The matrix [[1, a, 2], [1, 2, 5], [2, 1,...

The matrix `[[1, a, 2], [1, 2, 5], [2, 1, 1]]` is not invertible, if a=

A

`-1`

B

`0`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) for which the matrix \[ \begin{bmatrix} 1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1 \end{bmatrix} \] is not invertible, we need to find when the determinant of the matrix is equal to zero. ### Step 1: Write down the determinant of the matrix The determinant of a 3x3 matrix \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] can be calculated using the formula: \[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: \[ \text{det} = 1 \cdot (2 \cdot 1 - 5 \cdot 1) - a \cdot (1 \cdot 1 - 5 \cdot 2) + 2 \cdot (1 \cdot 1 - 2 \cdot 2) \] ### Step 2: Calculate each term in the determinant 1. Calculate \( 2 \cdot 1 - 5 \cdot 1 \): \[ 2 - 5 = -3 \] 2. Calculate \( 1 \cdot 1 - 5 \cdot 2 \): \[ 1 - 10 = -9 \] 3. Calculate \( 1 \cdot 1 - 2 \cdot 2 \): \[ 1 - 4 = -3 \] ### Step 3: Substitute back into the determinant formula Now substituting these values back into the determinant expression: \[ \text{det} = 1 \cdot (-3) - a \cdot (-9) + 2 \cdot (-3) \] This simplifies to: \[ \text{det} = -3 + 9a - 6 \] ### Step 4: Combine like terms Combining the constant terms: \[ \text{det} = 9a - 9 \] ### Step 5: Set the determinant equal to zero For the matrix to be non-invertible, we set the determinant to zero: \[ 9a - 9 = 0 \] ### Step 6: Solve for \( a \) Solving for \( a \): \[ 9a = 9 \\ a = 1 \] ### Conclusion The matrix is not invertible when \( a = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The matrix [[lambda, -1, 4], [-3, 0, 2], [-1, 1, 2]] is invertible, if

Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for

Matrix of co-factors of the matrix [[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] is

The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

If A=[(1,lambda,2),(1,2,5),(2,1,1)] is not invertible then lambda =?

If the matrix [{:(alpha,2,2),(-3,0,4),(1,-1,1):}] is not invertible, then :

The inverse of matrix [[1, 2], [2, -1]] is

The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

If the matrix [{:(alpha, 2,2),(-3,0,4),(1,-1,1):}] is not invertible then:

The value of lambda for which the matrix [(1,-2,-1),(2,lambda,3),(-1,0,3)] will not be invertible ,

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If [[sin((pi)/(2)), cos((pi)/(3))], [2tan((pi)/(4)), 2k]] is not inver...

    Text Solution

    |

  2. The matrix [[lambda, -1, 4], [-3, 0, 2], [-1, 1, 2]] is invertible, if

    Text Solution

    |

  3. The matrix [[1, a, 2], [1, 2, 5], [2, 1, 1]] is not invertible, if a=

    Text Solution

    |

  4. If the inverse of [[1, 2, x], [4, -1, 7], [2, 4, -6]] does not exist, ...

    Text Solution

    |

  5. If [[x, 1, 1], [2, 3, 4], [1, 1, 1]] has no inverse, then x=

    Text Solution

    |

  6. Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for

    Text Solution

    |

  7. If k is a scalar and I is unit matrix of order 3, then adj(kI)=

    Text Solution

    |

  8. If a=[[-2, 6], [-5, 7]], then adjA=

    Text Solution

    |

  9. If A=[[2, -3], [3, 5]], then adjA=

    Text Solution

    |

  10. If A=[[2, -3], [4, 1]], then adjA=

    Text Solution

    |

  11. If A=[[4, 2], [3, 4]], then |adjA|=

    Text Solution

    |

  12. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  13. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  14. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  15. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  16. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  17. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  18. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  19. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  20. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |