Home
Class 12
MATHS
If the inverse of [[1, 2, x], [4, -1, 7]...

If the inverse of `[[1, 2, x], [4, -1, 7], [2, 4, -6]]` does not exist, then x=

A

`3`

B

`-3`

C

`0`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) for which the inverse of the matrix \[ A = \begin{bmatrix} 1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6 \end{bmatrix} \] does not exist, we need to calculate the determinant of the matrix and set it equal to zero, since the inverse of a matrix exists only if its determinant is non-zero. ### Step-by-step Solution: 1. **Write down the determinant formula for a 3x3 matrix:** The determinant of a 3x3 matrix \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] is calculated as: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ a = 1, b = 2, c = x, d = 4, e = -1, f = 7, g = 2, h = 4, i = -6 \] 2. **Substituting the values into the determinant formula:** \[ \text{det}(A) = 1((-1)(-6) - (7)(4)) - 2((4)(-6) - (7)(2)) + x((4)(4) - (-1)(2)) \] 3. **Calculate each term:** - First term: \[ 1(6 - 28) = 1(-22) = -22 \] - Second term: \[ -2(-24 - 14) = -2(-38) = 76 \] - Third term: \[ x(16 + 2) = x(18) \] 4. **Combine the terms:** \[ \text{det}(A) = -22 + 76 + 18x = 54 + 18x \] 5. **Set the determinant equal to zero:** \[ 54 + 18x = 0 \] 6. **Solve for \( x \):** \[ 18x = -54 \] \[ x = \frac{-54}{18} = -3 \] Thus, the value of \( x \) for which the inverse of the matrix does not exist is \[ \boxed{-3} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If [[x, 1, 1], [2, 3, 4], [1, 1, 1]] has no inverse, then x=

The inverse of [(1,2,4),(3,-19,7),(2,4,8)] is

The inverse of matrix [[2, 1], [7, 4]] is

If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not exist, then the vlaue of alpha is

IF the inverse of the matrix [(alpha , 14,-1),(2,3,1),(6,2,3)] does not exist then the value of alpha is

" If "[[1,2,x],[4,-1,7],[2,4,-6]]" in a singular matrix,then "x" is equal to "

If ( [1 , -2 ],[ 3 , 6 ] ) + 2x = ( [ 5 , -6 ],[ -7 , 4 ]) then x = ?

The value of x such that the matrix [[1,3,2],[2,5,x],[4,7-x,-6]] has no inverse is

If |[2,4],[5,1]|=|[2x,4],[6,x]| then x is

[" The derivative of the function "],[f(x)=root(3)((x^(2)-1)^(2))],[" does not exist for "x=+-1],[" does not exist for "x=2/3],[" exists for all "x],[" does not exist for "x=3/2]

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The matrix [[lambda, -1, 4], [-3, 0, 2], [-1, 1, 2]] is invertible, if

    Text Solution

    |

  2. The matrix [[1, a, 2], [1, 2, 5], [2, 1, 1]] is not invertible, if a=

    Text Solution

    |

  3. If the inverse of [[1, 2, x], [4, -1, 7], [2, 4, -6]] does not exist, ...

    Text Solution

    |

  4. If [[x, 1, 1], [2, 3, 4], [1, 1, 1]] has no inverse, then x=

    Text Solution

    |

  5. Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for

    Text Solution

    |

  6. If k is a scalar and I is unit matrix of order 3, then adj(kI)=

    Text Solution

    |

  7. If a=[[-2, 6], [-5, 7]], then adjA=

    Text Solution

    |

  8. If A=[[2, -3], [3, 5]], then adjA=

    Text Solution

    |

  9. If A=[[2, -3], [4, 1]], then adjA=

    Text Solution

    |

  10. If A=[[4, 2], [3, 4]], then |adjA|=

    Text Solution

    |

  11. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  12. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  13. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  14. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  15. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  16. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  17. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  18. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  19. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  20. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |