Home
Class 12
MATHS
If a=[[-2, 6], [-5, 7]], then adjA=...

If `a=[[-2, 6], [-5, 7]]`, then adjA=

A

`[[7, -6], [5, -2]]`

B

`[[7, -5], [6, -2]]`

C

`[[2, -6], [5, -7]]`

D

`[[-2, 6], [-5, 7]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{bmatrix} -2 & 6 \\ -5 & 7 \end{bmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor matrix is derived from the original matrix by calculating the cofactors of each element. The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column. #### Calculation of Cofactors: 1. **Cofactor of \( -2 \) (element at (1,1))**: - Minor \( M_{11} = 7 \) (determinant of the submatrix formed by removing the first row and first column) - Cofactor \( C_{11} = (+1) \cdot 7 = 7 \) 2. **Cofactor of \( 6 \) (element at (1,2))**: - Minor \( M_{12} = -5 \) (determinant of the submatrix formed by removing the first row and second column) - Cofactor \( C_{12} = (-1) \cdot (-5) = 5 \) 3. **Cofactor of \( -5 \) (element at (2,1))**: - Minor \( M_{21} = 6 \) (determinant of the submatrix formed by removing the second row and first column) - Cofactor \( C_{21} = (-1) \cdot 6 = -6 \) 4. **Cofactor of \( 7 \) (element at (2,2))**: - Minor \( M_{22} = -2 \) (determinant of the submatrix formed by removing the second row and second column) - Cofactor \( C_{22} = (+1) \cdot (-2) = -2 \) Thus, the cofactor matrix is: \[ \text{Cofactor Matrix} = \begin{bmatrix} 7 & 5 \\ -6 & -2 \end{bmatrix} \] ### Step 2: Find the Adjoint of A The adjoint of a matrix is the transpose of the cofactor matrix. Therefore, we will transpose the cofactor matrix obtained in Step 1. \[ \text{Adjoint of A} = \text{Transpose of Cofactor Matrix} = \begin{bmatrix} 7 & 5 \\ -6 & -2 \end{bmatrix}^T = \begin{bmatrix} 7 & -6 \\ 5 & -2 \end{bmatrix} \] ### Final Answer \[ \text{adj} A = \begin{bmatrix} 7 & -6 \\ 5 & -2 \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[-2,6],[-5,7]] , then adj A =

If A=[[3, 4], [5, 7]] , then A(adjA)=

If A=[[2, -3], [3, 5]] , then adjA=

If A=[[2, -3], [4, 1]] , then adjA=

If A=[[4, 2], [3, 4]] , then |adjA|=

If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] , then adjA=

If A=[[2,-2],[4,3]] then adjA

If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3 , then adjA=

If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

If |A|=3 and A^(-1)=[(3,-1),((-5)/3,2/3)] then adjA=?

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. Matrix A=[[1, 0, -k], [2, 1, 3], [k, 0, 1]] is invertible for

    Text Solution

    |

  2. If k is a scalar and I is unit matrix of order 3, then adj(kI)=

    Text Solution

    |

  3. If a=[[-2, 6], [-5, 7]], then adjA=

    Text Solution

    |

  4. If A=[[2, -3], [3, 5]], then adjA=

    Text Solution

    |

  5. If A=[[2, -3], [4, 1]], then adjA=

    Text Solution

    |

  6. If A=[[4, 2], [3, 4]], then |adjA|=

    Text Solution

    |

  7. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  8. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  9. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  10. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  11. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  12. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  13. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  14. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  15. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  16. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  17. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  18. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  19. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  20. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |