Home
Class 12
MATHS
If X=[[-x, -y], [z, t]], then transpose ...

If `X=[[-x, -y], [z, t]]`, then transpose of adjX is

A

`[[t, z], [-y, -x]]`

B

`[[t, -z], [y, -x]]`

C

`[[t, y], [-z, -x]]`

D

`[[-x, -y], [z, t]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the transpose of the adjoint of the matrix \( X = \begin{bmatrix} -x & -y \\ z & t \end{bmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor matrix is derived from the original matrix \( X \) by calculating the cofactors of each element. The sign pattern for the cofactor matrix is as follows: \[ \begin{bmatrix} + & - \\ - & + \end{bmatrix} \] Now, we will calculate the cofactors: 1. **Cofactor of \(-x\)**: The diagonal element is \( t \). Since the sign is positive, the cofactor is \( t \). 2. **Cofactor of \(-y\)**: The diagonal element is \( z \). The sign is negative, so the cofactor is \( -z \). 3. **Cofactor of \( z \)**: The diagonal element is \(-y\). The sign is negative, thus the cofactor is \( -(-y) = y \). 4. **Cofactor of \( t \)**: The diagonal element is \(-x\). The sign is positive, so the cofactor is \( -x \). Thus, the cofactor matrix is: \[ \text{Cofactor Matrix} = \begin{bmatrix} t & -z \\ y & -x \end{bmatrix} \] ### Step 2: Find the Adjoint Matrix The adjoint of a matrix is the transpose of its cofactor matrix. Therefore, we will transpose the cofactor matrix: \[ \text{Adjoint of } X = \begin{bmatrix} t & -z \\ y & -x \end{bmatrix}^T = \begin{bmatrix} t & y \\ -z & -x \end{bmatrix} \] ### Step 3: Find the Transpose of the Adjoint Matrix Now we need to find the transpose of the adjoint matrix: \[ \text{Transpose of Adjoint of } X = \begin{bmatrix} t & y \\ -z & -x \end{bmatrix}^T = \begin{bmatrix} t & -z \\ y & -x \end{bmatrix} \] ### Final Result Thus, the transpose of the adjoint of matrix \( X \) is: \[ \text{Transpose of } \text{adjoint } X = \begin{bmatrix} t & -z \\ y & -x \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

If A={x,y,z,t} then which of these is not true: (a) x in A (b) {y,z}sub A (c) t sub A (d) w!in A

If x, y and z are the roots of the equation 2t^(3)-(tan[x+y+z]pi)t^(2)-11t+2020=0 , then |(x,y,z),(y,z,x),(z,x,y)| is equal to (where, [x] denotes the greatest integral value less than or equal to x)

If x = 16, y = 10, z = 5 and t=-1, find the value of (x-y)(5sqrtx-y)+sqrt((x-y)(z-t)) .

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

If x,y,z,t>0 and xyzt=81 then minimum value of x+2y+7+8t is

Value of [[x+y, z,z ],[x, y+z, x],[y, y, z+x]], where x ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[2, -3], [4, 1]], then adjA=

    Text Solution

    |

  2. If A=[[4, 2], [3, 4]], then |adjA|=

    Text Solution

    |

  3. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  4. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  5. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  6. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  7. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  8. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  9. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  10. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  11. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  12. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  13. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  14. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  15. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  16. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  17. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  18. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  19. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  20. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |