Home
Class 12
MATHS
Adjoint of the matrix N=[[-4, -3, -3], [...

Adjoint of the matrix `N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]]` is

A

`-N`

B

`N`

C

`2N`

D

`-2N`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor matrix \( C \) is obtained by calculating the cofactors of each element in the matrix \( N \). #### Cofactor Calculation: 1. **Cofactor \( C_{11} \)**: - Minor of \( C_{11} \) (determinant of the matrix obtained by deleting the 1st row and 1st column): \[ \text{Minor} = \begin{vmatrix} 0 & 1 \\ 4 & 3 \end{vmatrix} = (0 \cdot 3 - 1 \cdot 4) = -4 \] - Therefore, \( C_{11} = (-1)^{1+1} \cdot (-4) = -4 \). 2. **Cofactor \( C_{12} \)**: - Minor of \( C_{12} \): \[ \text{Minor} = \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} = (1 \cdot 3 - 1 \cdot 4) = -1 \] - Therefore, \( C_{12} = (-1)^{1+2} \cdot (-1) = 1 \). 3. **Cofactor \( C_{13} \)**: - Minor of \( C_{13} \): \[ \text{Minor} = \begin{vmatrix} 1 & 0 \\ 4 & 4 \end{vmatrix} = (1 \cdot 4 - 0 \cdot 4) = 4 \] - Therefore, \( C_{13} = (-1)^{1+3} \cdot 4 = 4 \). 4. **Cofactor \( C_{21} \)**: - Minor of \( C_{21} \): \[ \text{Minor} = \begin{vmatrix} -3 & -3 \\ 4 & 3 \end{vmatrix} = (-3 \cdot 3 - (-3) \cdot 4) = -9 + 12 = 3 \] - Therefore, \( C_{21} = (-1)^{2+1} \cdot 3 = -3 \). 5. **Cofactor \( C_{22} \)**: - Minor of \( C_{22} \): \[ \text{Minor} = \begin{vmatrix} -4 & -3 \\ 4 & 3 \end{vmatrix} = (-4 \cdot 3 - (-3) \cdot 4) = -12 + 12 = 0 \] - Therefore, \( C_{22} = (-1)^{2+2} \cdot 0 = 0 \). 6. **Cofactor \( C_{23} \)**: - Minor of \( C_{23} \): \[ \text{Minor} = \begin{vmatrix} -4 & -3 \\ 4 & 4 \end{vmatrix} = (-4 \cdot 4 - (-3) \cdot 4) = -16 + 12 = -4 \] - Therefore, \( C_{23} = (-1)^{2+3} \cdot (-4) = 4 \). 7. **Cofactor \( C_{31} \)**: - Minor of \( C_{31} \): \[ \text{Minor} = \begin{vmatrix} -3 & -3 \\ 0 & 1 \end{vmatrix} = (-3 \cdot 1 - (-3) \cdot 0) = -3 \] - Therefore, \( C_{31} = (-1)^{3+1} \cdot (-3) = -3 \). 8. **Cofactor \( C_{32} \)**: - Minor of \( C_{32} \): \[ \text{Minor} = \begin{vmatrix} -4 & -3 \\ 1 & 1 \end{vmatrix} = (-4 \cdot 1 - (-3) \cdot 1) = -4 + 3 = -1 \] - Therefore, \( C_{32} = (-1)^{3+2} \cdot (-1) = 1 \). 9. **Cofactor \( C_{33} \)**: - Minor of \( C_{33} \): \[ \text{Minor} = \begin{vmatrix} -4 & -3 \\ 1 & 0 \end{vmatrix} = (-4 \cdot 0 - (-3) \cdot 1) = 3 \] - Therefore, \( C_{33} = (-1)^{3+3} \cdot 3 = 3 \). ### Step 2: Construct the Cofactor Matrix Now, we can construct the cofactor matrix \( C \): \[ C = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix} \] ### Step 3: Transpose the Cofactor Matrix To find the adjoint, we take the transpose of the cofactor matrix: \[ \text{adj}(N) = C^T = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} \] ### Step 4: Compare with Original Matrix Notice that: \[ \text{adj}(N) = N \] ### Final Answer Thus, the adjoint of the matrix \( N \) is: \[ \text{adj}(N) = N \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

Find the adjoint of the matrix A=[[4,-2,-1],[1,1,-1],[-1,2,4]] and show that A(adj A)=|A|I

Find the adjoint of the matrix A=[[2,3],[1,4]] .

Find the adjoint of matrix A=[[2,-3],[4,1]]

1.5.Find the adjoint of the matrix [[2,-3],[3,5]] .

The adjoint of matrix [(1,-4),(3,2)] is

The matrix A = [{:(2 , -2, -4),(- 1, 3, 4),(1 , - 2, -3):}] is

If the adjoint of a 3times3 matrix "P" is [[1,2,1],[4,1,1],[4,7,3]] ,then the sum of squares of possible values of determinant of "P" is

Find the Rank of the matrix: [[1,1,1,-1],[1,2,3,4],[3,4,5,2]]

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[4, 2], [3, 4]], then |adjA|=

    Text Solution

    |

  2. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  3. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  4. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  5. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  6. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  7. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  8. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  9. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  10. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  11. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  12. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  13. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  14. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  15. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  16. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  17. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  18. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  19. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  20. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |