Home
Class 12
MATHS
If A=[[-1, -2, -2], [2, 1, -2], [2, -2, ...

If `A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]]`, then adjA=

A

A

B

A'

C

3A

D

3A'

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \), we will follow these steps: ### Step 1: Find the Cofactor Matrix The cofactor matrix \( C \) is found by calculating the cofactor \( C_{ij} \) for each element of the matrix \( A \). The cofactor is given by: \[ C_{ij} = (-1)^{i+j} \cdot \text{det}(M_{ij}) \] where \( M_{ij} \) is the minor matrix obtained by deleting the \( i \)-th row and \( j \)-th column from \( A \). #### Calculation of Cofactors: 1. **Cofactor \( C_{11} \)**: \[ M_{11} = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}, \quad \text{det}(M_{11}) = (1)(1) - (-2)(-2) = 1 - 4 = -3 \implies C_{11} = (-1)^{1+1} \cdot (-3) = -3 \] 2. **Cofactor \( C_{12} \)**: \[ M_{12} = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}, \quad \text{det}(M_{12}) = (2)(1) - (-2)(2) = 2 + 4 = 6 \implies C_{12} = (-1)^{1+2} \cdot 6 = -6 \] 3. **Cofactor \( C_{13} \)**: \[ M_{13} = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}, \quad \text{det}(M_{13}) = (2)(-2) - (1)(2) = -4 - 2 = -6 \implies C_{13} = (-1)^{1+3} \cdot (-6) = -6 \] 4. **Cofactor \( C_{21} \)**: \[ M_{21} = \begin{bmatrix} -2 & -2 \\ -2 & 1 \end{bmatrix}, \quad \text{det}(M_{21}) = (-2)(1) - (-2)(-2) = -2 - 4 = -6 \implies C_{21} = (-1)^{2+1} \cdot (-6) = 6 \] 5. **Cofactor \( C_{22} \)**: \[ M_{22} = \begin{bmatrix} -1 & -2 \\ 2 & 1 \end{bmatrix}, \quad \text{det}(M_{22}) = (-1)(1) - (-2)(2) = -1 + 4 = 3 \implies C_{22} = (-1)^{2+2} \cdot 3 = 3 \] 6. **Cofactor \( C_{23} \)**: \[ M_{23} = \begin{bmatrix} -1 & -2 \\ 2 & -2 \end{bmatrix}, \quad \text{det}(M_{23}) = (-1)(-2) - (-2)(2) = 2 + 4 = 6 \implies C_{23} = (-1)^{2+3} \cdot 6 = -6 \] 7. **Cofactor \( C_{31} \)**: \[ M_{31} = \begin{bmatrix} -2 & -2 \\ 1 & -2 \end{bmatrix}, \quad \text{det}(M_{31}) = (-2)(-2) - (-2)(1) = 4 + 2 = 6 \implies C_{31} = (-1)^{3+1} \cdot 6 = 6 \] 8. **Cofactor \( C_{32} \)**: \[ M_{32} = \begin{bmatrix} -1 & -2 \\ 2 & -2 \end{bmatrix}, \quad \text{det}(M_{32}) = (-1)(-2) - (-2)(2) = 2 + 4 = 6 \implies C_{32} = (-1)^{3+2} \cdot 6 = -6 \] 9. **Cofactor \( C_{33} \)**: \[ M_{33} = \begin{bmatrix} -1 & -2 \\ 2 & 1 \end{bmatrix}, \quad \text{det}(M_{33}) = (-1)(1) - (-2)(2) = -1 + 4 = 3 \implies C_{33} = (-1)^{3+3} \cdot 3 = 3 \] #### Constructing the Cofactor Matrix: \[ C = \begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \end{bmatrix} \] ### Step 2: Find the Adjoint Matrix The adjoint of matrix \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix} \] ### Final Answer Thus, the adjoint of matrix \( A \) is: \[ \text{adj}(A) = \begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]] , then A(adjA)=

If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] , then adjA=

If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]] , then (adjA)A=

If A=[[-1,-2,-2],[2,1,-2],[2,-2,1]], show that 3adjA=A^T.

If A=[[0, 1, -1], [2, 1, 3], [3, 2, 1]] , then (A(adjA)A^(-1))A=

If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]] , then adjA=

If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal to 0, then (A^(2)-4A)A^(-1)=

If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]] , then |adj(adjA)|=

A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0], [-2, -2, y]] , then (x, y)=

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If X=[[-x, -y], [z, t]], then transpose of adjX is

    Text Solution

    |

  2. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  3. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  4. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  5. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  6. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  7. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  8. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  9. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  10. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  11. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  12. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  13. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  14. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  15. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  16. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  17. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  18. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  19. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |

  20. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |