Home
Class 12
MATHS
If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]],...

If `A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]]`, then `[[12, 4, -6], [3, 1, 14], [20, -14, -10]]` is

A

adj(A')

B

`-(adj(A))`

C

`adjA`

D

`-A^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the adjoint of the matrix \( A \) given by: \[ A = \begin{bmatrix} 3 & 5 & -1 \\ 2 & 0 & 4 \\ 1 & -3 & 0 \end{bmatrix} \] ### Step 1: Calculate the Cofactor Matrix The cofactor matrix is obtained by calculating the determinant of the 2x2 submatrices formed by removing one row and one column for each element of the matrix, while also applying the appropriate sign based on the position of the element. 1. **Cofactor \( C_{11} \)**: - Remove the first row and first column: \[ \begin{vmatrix} 0 & 4 \\ -3 & 0 \end{vmatrix} = (0)(0) - (4)(-3) = 12 \quad \text{(positive)} \] Thus, \( C_{11} = 12 \). 2. **Cofactor \( C_{12} \)**: - Remove the first row and second column: \[ \begin{vmatrix} 2 & 4 \\ 1 & 0 \end{vmatrix} = (2)(0) - (4)(1) = -4 \quad \text{(negative)} \] Thus, \( C_{12} = 4 \). 3. **Cofactor \( C_{13} \)**: - Remove the first row and third column: \[ \begin{vmatrix} 2 & 0 \\ 1 & -3 \end{vmatrix} = (2)(-3) - (0)(1) = -6 \quad \text{(positive)} \] Thus, \( C_{13} = -6 \). 4. **Cofactor \( C_{21} \)**: - Remove the second row and first column: \[ \begin{vmatrix} 5 & -1 \\ -3 & 0 \end{vmatrix} = (5)(0) - (-1)(-3) = -3 \quad \text{(negative)} \] Thus, \( C_{21} = 3 \). 5. **Cofactor \( C_{22} \)**: - Remove the second row and second column: \[ \begin{vmatrix} 3 & -1 \\ 1 & 0 \end{vmatrix} = (3)(0) - (-1)(1) = 1 \quad \text{(positive)} \] Thus, \( C_{22} = 1 \). 6. **Cofactor \( C_{23} \)**: - Remove the second row and third column: \[ \begin{vmatrix} 3 & 5 \\ 1 & -3 \end{vmatrix} = (3)(-3) - (5)(1) = -9 - 5 = -14 \quad \text{(negative)} \] Thus, \( C_{23} = 14 \). 7. **Cofactor \( C_{31} \)**: - Remove the third row and first column: \[ \begin{vmatrix} 5 & -1 \\ 0 & 4 \end{vmatrix} = (5)(4) - (-1)(0) = 20 \quad \text{(positive)} \] Thus, \( C_{31} = 20 \). 8. **Cofactor \( C_{32} \)**: - Remove the third row and second column: \[ \begin{vmatrix} 3 & -1 \\ 2 & 4 \end{vmatrix} = (3)(4) - (-1)(2) = 12 + 2 = 14 \quad \text{(negative)} \] Thus, \( C_{32} = -14 \). 9. **Cofactor \( C_{33} \)**: - Remove the third row and third column: \[ \begin{vmatrix} 3 & 5 \\ 2 & 0 \end{vmatrix} = (3)(0) - (5)(2) = -10 \quad \text{(positive)} \] Thus, \( C_{33} = -10 \). ### Step 2: Form the Cofactor Matrix Now we can form the cofactor matrix \( C \): \[ C = \begin{bmatrix} 12 & 4 & -6 \\ 3 & 1 & 14 \\ 20 & -14 & -10 \end{bmatrix} \] ### Step 3: Transpose the Cofactor Matrix to Get the Adjoint The adjoint of matrix \( A \) is the transpose of the cofactor matrix: \[ \text{Adjoint } A = C^T = \begin{bmatrix} 12 & 3 & 20 \\ 4 & 1 & -14 \\ -6 & 14 & -10 \end{bmatrix} \] ### Step 4: Compare with Given Matrix The given matrix is: \[ \begin{bmatrix} 12 & 4 & -6 \\ 3 & 1 & 14 \\ 20 & -14 & -10 \end{bmatrix} \] ### Conclusion The given matrix is actually the adjoint of \( A \) transposed, which means: \[ \text{Given Matrix} = \text{Adjoint } A^T \] Thus, the answer is the first option: **Adjoint \( A^T \)**.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .

If |[3,1,-4] , [3,2,5] , [1,-1,3]|=49 then |[6,3,-16] , [6,6,20] , [2,-3,12]|=

9,-1,4-2,1,3]]=A+[[1,2,-10,4,9]], then

If A=[[3,2,-1],[2,-2,0],[1,3,1]],B=[[-3,-1,0],[2,1,3],[4,-1,2]] and X=A+B then find X

If A=[[2,3,-4],[1,0,6],[-2,1,5]],B=[[5,1,2],[6,-1,4],[5,3,-4]] , find 2A-3B .

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC). Hence or otherwise write down the value of (AB)C.

If A=[[3,3,5],[4,4,4]] and B=[[1,3],[-1,2],[0,0]] then find AB

[[x,4,1]][[2,1,21,0,20,2,-4]][[14-1]]=0, find x

If A=[(3,4,1),(1,0,-2),(-2,-1,2)] then A^(-1) =?

If the [[x, 2,32,3, x3, x, 2]] = the [[1, x, 4x, 4,14,1, x]] = the [[0,5, x5, x, 0x, 0.5]] = 0

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  2. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  3. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  4. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  5. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  6. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  7. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  8. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  9. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  10. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  11. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  12. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  13. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  14. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  15. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  16. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  17. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  18. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |

  19. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |

  20. If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]], then |adj(adjA)|=

    Text Solution

    |