Home
Class 12
MATHS
If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1...

If `A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]]`, then adjA=

A

`[[-3, -1, -11], [-12, 3, -9], [6, 2, 1]]`

B

`[[-3, -12, 6], [-1, 3, 2], [-11, -9, 1]]`

C

`[[-3, -1, -11], [12, 3, -9], [6, 2, 1]]`

D

`[[-3, -1, 11], [-12, 2, 9], [6, 2, 1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A \), we will follow these steps: Given: \[ A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 3 & 5 \\ -2 & 0 & -1 \end{bmatrix} \] ### Step 1: Find the Cofactor Matrix \( C \) The cofactor matrix \( C \) is obtained by calculating the cofactors \( C_{ij} \) for each element of the matrix \( A \). The cofactor \( C_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot D_{ij} \] where \( D_{ij} \) is the determinant of the submatrix obtained by deleting the \( i \)-th row and \( j \)-th column from \( A \). #### Calculate each cofactor: 1. **Cofactor \( C_{11} \)**: \[ D_{11} = \begin{vmatrix} 3 & 5 \\ 0 & -1 \end{vmatrix} = (3 \cdot -1) - (5 \cdot 0) = -3 \] \[ C_{11} = (-1)^{1+1} \cdot D_{11} = 1 \cdot (-3) = -3 \] 2. **Cofactor \( C_{12} \)**: \[ D_{12} = \begin{vmatrix} -2 & 5 \\ -2 & -1 \end{vmatrix} = (-2 \cdot -1) - (5 \cdot -2) = 2 + 10 = 12 \] \[ C_{12} = (-1)^{1+2} \cdot D_{12} = -1 \cdot 12 = -12 \] 3. **Cofactor \( C_{13} \)**: \[ D_{13} = \begin{vmatrix} -2 & 3 \\ -2 & 0 \end{vmatrix} = (-2 \cdot 0) - (3 \cdot -2) = 0 + 6 = 6 \] \[ C_{13} = (-1)^{1+3} \cdot D_{13} = 1 \cdot 6 = 6 \] 4. **Cofactor \( C_{21} \)**: \[ D_{21} = \begin{vmatrix} -1 & 2 \\ 0 & -1 \end{vmatrix} = (-1 \cdot -1) - (2 \cdot 0) = 1 \] \[ C_{21} = (-1)^{2+1} \cdot D_{21} = -1 \cdot 1 = -1 \] 5. **Cofactor \( C_{22} \)**: \[ D_{22} = \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} = (1 \cdot -1) - (2 \cdot -2) = -1 + 4 = 3 \] \[ C_{22} = (-1)^{2+2} \cdot D_{22} = 1 \cdot 3 = 3 \] 6. **Cofactor \( C_{23} \)**: \[ D_{23} = \begin{vmatrix} 1 & -1 \\ -2 & 0 \end{vmatrix} = (1 \cdot 0) - (-1 \cdot -2) = 0 - 2 = -2 \] \[ C_{23} = (-1)^{2+3} \cdot D_{23} = -1 \cdot -2 = 2 \] 7. **Cofactor \( C_{31} \)**: \[ D_{31} = \begin{vmatrix} -1 & 2 \\ 3 & 5 \end{vmatrix} = (-1 \cdot 5) - (2 \cdot 3) = -5 - 6 = -11 \] \[ C_{31} = (-1)^{3+1} \cdot D_{31} = 1 \cdot -11 = -11 \] 8. **Cofactor \( C_{32} \)**: \[ D_{32} = \begin{vmatrix} 1 & 2 \\ -2 & 5 \end{vmatrix} = (1 \cdot 5) - (2 \cdot -2) = 5 + 4 = 9 \] \[ C_{32} = (-1)^{3+2} \cdot D_{32} = -1 \cdot 9 = -9 \] 9. **Cofactor \( C_{33} \)**: \[ D_{33} = \begin{vmatrix} 1 & -1 \\ -2 & 3 \end{vmatrix} = (1 \cdot 3) - (-1 \cdot -2) = 3 - 2 = 1 \] \[ C_{33} = (-1)^{3+3} \cdot D_{33} = 1 \cdot 1 = 1 \] ### Step 2: Construct the Cofactor Matrix \( C \) Now we can construct the cofactor matrix \( C \): \[ C = \begin{bmatrix} -3 & -12 & 6 \\ -1 & 3 & 2 \\ -11 & -9 & 1 \end{bmatrix} \] ### Step 3: Find the Adjoint Matrix \( \text{adj}(A) \) The adjoint of matrix \( A \) is the transpose of the cofactor matrix \( C \): \[ \text{adj}(A) = C^T = \begin{bmatrix} -3 & -1 & -11 \\ -12 & 3 & -9 \\ 6 & 2 & 1 \end{bmatrix} \] ### Final Answer Thus, the adjoint of matrix \( A \) is: \[ \text{adj}(A) = \begin{bmatrix} -3 & -1 & -11 \\ -12 & 3 & -9 \\ 6 & 2 & 1 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] , then adjA=

If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]] , then (adjA)A=

If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]] , then A(adjA)=

If A=[[0, 1, -1], [2, 1, 3], [3, 2, 1]] , then (A(adjA)A^(-1))A=

If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]] , then |adj(adjA)|=

If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]] , then adjA=

If A=[[2, -3], [4, 1]] , then adjA=

If A=[[2, -3], [3, 5]] , then adjA=

If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3 , then adjA=

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]], then adjA=

    Text Solution

    |

  2. If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]], then [[12, 4, -6], [3, 1, 14]...

    Text Solution

    |

  3. If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]], then adjA=

    Text Solution

    |

  4. If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]], then adjA=

    Text Solution

    |

  5. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  6. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  7. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  8. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  9. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  10. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  11. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  12. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  13. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  14. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  15. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  16. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  17. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |

  18. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |

  19. If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]], then |adj(adjA)|=

    Text Solution

    |

  20. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |