Home
Class 12
MATHS
A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] an...

`A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0], [-2, -2, y]]`, then (x, y)=

A

`(4, -1)`

B

`(-4, 1)`

C

`(-4, -10)`

D

`(4, 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) in the adjoint matrix \( \text{adj} A \) given the matrix \( A \). ### Step-by-Step Solution: 1. **Identify the Matrices**: We have: \[ A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix} \] and \[ \text{adj} A = \begin{bmatrix} 5 & x & -2 \\ 1 & 1 & 0 \\ -2 & -2 & y \end{bmatrix} \] 2. **Find the Cofactor Matrix**: The adjoint of a matrix is the transpose of its cofactor matrix. We need to find the cofactors corresponding to the positions of \( x \) and \( y \). 3. **Calculate \( C_{21} \) (Cofactor for \( x \))**: The cofactor \( C_{21} \) is calculated by removing the second row and first column from \( A \): \[ C_{21} = (-1)^{2+1} \cdot D_{21} \] where \( D_{21} \) is the determinant of the matrix formed by the remaining elements: \[ D_{21} = \begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} = (0 \cdot 1) - (2 \cdot 2) = -4 \] Thus, \[ C_{21} = -(-4) = 4 \] Therefore, \( x = 4 \). 4. **Calculate \( C_{33} \) (Cofactor for \( y \))**: The cofactor \( C_{33} \) is calculated by removing the third row and third column from \( A \): \[ C_{33} = (-1)^{3+3} \cdot D_{33} \] where \( D_{33} \) is the determinant of the matrix formed by the remaining elements: \[ D_{33} = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = (1 \cdot 1) - (0 \cdot -1) = 1 \] Thus, \[ C_{33} = 1 \] Therefore, \( y = 1 \). 5. **Final Result**: We have found \( x \) and \( y \): \[ (x, y) = (4, 1) \] ### Conclusion: The values of \( x \) and \( y \) are: \[ \boxed{(4, 1)} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]] , then adjA=

If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] , then adjA=

If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]] , then (adjA)A=

If x+y=[[1,4,3] , [-2,5,6] , [7,0,2]] and x-y=[[3,2,5] , [4,1,2] , [1,0,4]] then find x and y

.If [[x-1,2,y-5],[z,0,2],[1,-1,1+a]]=[[1-x,2,-y],[2,0,2],[1,-1,1]] then find x,y,z,a

If A=[[x,2,3],[-1,5,3]] , B=[[1,-2,y],[1,z,-2]] and C=[[3,0,1],[0,2,1]] , also A+B-C=O then find x,y,z

If A=[[x,2,3],[-1,5,3]] , B=[[1,-2,y],[1,z,-2]] and C=[[3,0,1],[0,2,1]] , also A+B-C=O then find x,y,z

If [[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]] , then [[x, y], [2, 0]]^(-1)=

If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] then

If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] ,then

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[5a-b3 2] and A adj A=AA^T , then 5a+b is equal to: (1) -1 (2) ...

    Text Solution

    |

  2. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  3. A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0],...

    Text Solution

    |

  4. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  5. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  6. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  7. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  8. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  9. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  10. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  11. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  12. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  13. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |

  14. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |

  15. If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]], then |adj(adjA)|=

    Text Solution

    |

  16. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  17. If A=[[1, 2, 3], [1, 4, 9], [1, 8, 27]], then the value of |adjA| is

    Text Solution

    |

  18. If P=[[1, alpha, 3], [1, 3, 3], [2, 4, 4]] is the adjoint of 3times3 m...

    Text Solution

    |

  19. If A is a matrix of order 3 and |A|=8, then |adjA|=

    Text Solution

    |

  20. For a 3xx3 matrix A if |A|=4, then|Adj.A| is (A) Both A and R are true...

    Text Solution

    |