Home
Class 12
MATHS
If A=[[3, 4], [5, 7]], then A(adjA)=...

If `A=[[3, 4], [5, 7]]`, then A(adjA)=

A

`|A|I`

B

`|A|`

C

`I`

D

`2I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( A \cdot \text{adj}(A) \) where \( A = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix} \), we can use the formula: \[ A \cdot \text{adj}(A) = \text{det}(A) \cdot I_n \] where \( I_n \) is the identity matrix of the same order as \( A \). ### Step 1: Calculate the Determinant of A The determinant of a \( 2 \times 2 \) matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix} \): - \( a = 3 \) - \( b = 4 \) - \( c = 5 \) - \( d = 7 \) Now, substituting these values into the determinant formula: \[ \text{det}(A) = (3 \cdot 7) - (4 \cdot 5) = 21 - 20 = 1 \] ### Step 2: Write the Identity Matrix \( I_2 \) The identity matrix \( I_2 \) for a \( 2 \times 2 \) matrix is: \[ I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] ### Step 3: Calculate \( A \cdot \text{adj}(A) \) Using the formula \( A \cdot \text{adj}(A) = \text{det}(A) \cdot I_n \): \[ A \cdot \text{adj}(A) = 1 \cdot I_2 = 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] ### Final Result Thus, we have: \[ A \cdot \text{adj}(A) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[1, 2], [3, 4]] , then A(adjA)=kI, then k=

If a=[[-2, 6], [-5, 7]] , then adjA=

If A=[[4, 2], [3, 4]] , then |adjA|=

If A=[[2, -3], [3, 5]] , then adjA=

If A=[[2, -3], [4, 1]] , then adjA=

If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]] , then A(adjA)=

If A=[[2,-2],[4,3]] then adjA

If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] , then adjA=

If A=[[1,2,3],[2,3,4],[0,0,2]] then the value of adj(adjA) is-

If A=[(4,5),(3,1)] then |adjA| is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[-1, -2, -2], [2, 1, -2], [2, -2, 1]] and kA'=adjA, then k=

    Text Solution

    |

  2. If A is a unit matrix of order n, then A(adjA) is

    Text Solution

    |

  3. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  4. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  5. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  6. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  7. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  8. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  9. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  10. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |

  11. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |

  12. If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]], then |adj(adjA)|=

    Text Solution

    |

  13. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  14. If A=[[1, 2, 3], [1, 4, 9], [1, 8, 27]], then the value of |adjA| is

    Text Solution

    |

  15. If P=[[1, alpha, 3], [1, 3, 3], [2, 4, 4]] is the adjoint of 3times3 m...

    Text Solution

    |

  16. If A is a matrix of order 3 and |A|=8, then |adjA|=

    Text Solution

    |

  17. For a 3xx3 matrix A if |A|=4, then|Adj.A| is (A) Both A and R are true...

    Text Solution

    |

  18. If A is a square matrix of order 3 and |adjA|=25, then |A|=

    Text Solution

    |

  19. If A is a square matrix of order 3 such that A^(-1) exists, then |adjA...

    Text Solution

    |

  20. If A=[[a, 0, 0], [0, a, 0], [0, 0, a]], then |adjA|=

    Text Solution

    |