Home
Class 12
MATHS
If A=[[cosalpha, sinalpha], [-sinalpha, ...

If `A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0], [0, k]]`, then k=

A

`sinalphacosalpha`

B

`cos2alpha`

C

`0`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Show : [ [ cosalpha , -sinalpha ] , [ sinalpha , cosalpha ] ]= [ [1 , 0 ] , [ 0 , 1 ]]

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

let alpha=pi/5 and A=[[cosalpha , sinalpha] , [-sinalpha , cosalpha]] and B=A+A^2+A^3+A^4 then: (A) B is singular (B) B is symmetric (C) B is skew symmetric (D) 0 lt |B| lt 1

If A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[3, 4], [5, 7]], then A(adjA)=

    Text Solution

    |

  2. If A=[[1, 2], [3, 4]], then A(adjA)=kI, then k=

    Text Solution

    |

  3. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  4. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  5. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  6. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  7. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  8. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |

  9. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |

  10. If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]], then |adj(adjA)|=

    Text Solution

    |

  11. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  12. If A=[[1, 2, 3], [1, 4, 9], [1, 8, 27]], then the value of |adjA| is

    Text Solution

    |

  13. If P=[[1, alpha, 3], [1, 3, 3], [2, 4, 4]] is the adjoint of 3times3 m...

    Text Solution

    |

  14. If A is a matrix of order 3 and |A|=8, then |adjA|=

    Text Solution

    |

  15. For a 3xx3 matrix A if |A|=4, then|Adj.A| is (A) Both A and R are true...

    Text Solution

    |

  16. If A is a square matrix of order 3 and |adjA|=25, then |A|=

    Text Solution

    |

  17. If A is a square matrix of order 3 such that A^(-1) exists, then |adjA...

    Text Solution

    |

  18. If A=[[a, 0, 0], [0, a, 0], [0, 0, a]], then |adjA|=

    Text Solution

    |

  19. If A=[[a, 0, 0], [0, a, 0], [0, 0, a]], then |A||adjA|=

    Text Solution

    |

  20. If A=[[3, 0, 0], [0, 3, 0], [0, 0, 3]], then |A||adjA|=

    Text Solution

    |