Home
Class 12
MATHS
If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]]...

If `A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]]`, then (adjA)A=

A

`[[2, 0, 0], [0, 2, 0], [0, 0, 2]]`

B

`[[7, 0, 0], [0, 7, 0], [0, 0, 7]]`

C

`[[-7, 0, 0], [0, -7, 0], [0, 0, -7]]`

D

`[[11, 0, 0], [0, 11, 0], [0, 0, 11]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find (adj A)A for the matrix \( A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \). ### Step 1: Calculate the Determinant of A To find \( (adj A)A \), we can use the property that \( (adj A)A = \text{det}(A) \cdot I_n \), where \( I_n \) is the identity matrix of the same order as \( A \). First, we calculate the determinant of matrix \( A \). \[ A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \] Using the cofactor expansion along the second column (since it has two zeros): \[ \text{det}(A) = -(-1) \cdot \text{det} \begin{bmatrix} 3 & -2 \\ 1 & 3 \end{bmatrix} \] Calculating the determinant of the 2x2 matrix: \[ \text{det} \begin{bmatrix} 3 & -2 \\ 1 & 3 \end{bmatrix} = (3 \cdot 3) - (-2 \cdot 1) = 9 + 2 = 11 \] Thus, \[ \text{det}(A) = 1 \cdot 11 = 11 \] ### Step 2: Formulate (adj A)A Now, we can express \( (adj A)A \) using the determinant we just calculated: \[ (adj A)A = \text{det}(A) \cdot I_3 \] Where \( I_3 \) is the 3x3 identity matrix: \[ I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Thus, \[ (adj A)A = 11 \cdot I_3 = 11 \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \] ### Final Answer Therefore, \[ (adj A)A = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] , then adjA=

If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]] , then A(adjA)=

If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]] , then adjA=

If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]] , then |adj(adjA)|=

If A=[[1,-1,2],[3,0,-2],[1,0,3]] then prove that A*(adjA)=|A|I Also,find A^(-1)

If A=[[0, 1, -1], [2, 1, 3], [3, 2, 1]] , then (A(adjA)A^(-1))A=

If A=[[3, 0, 0], [0, 3, 0], [0, 0, 3]] , then |A||adjA|=

If A = [[1,-1,2],[3,0,-2],[1,0,3]] prove A.adjA=|A|I Also,find A^ (− 1)

If A=[[2, -3], [4, 1]] , then adjA=

A=[[1, 0, 2], [-1, 1, -2], [0, 2, 1]] and adjA=[[5, x, -2], [1, 1, 0], [-2, -2, y]] , then (x, y)=

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0]...

    Text Solution

    |

  2. For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]], then |A|=

    Text Solution

    |

  3. If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]], then (adjA)A=

    Text Solution

    |

  4. If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]], then A(adjA)=

    Text Solution

    |

  5. If A is a square matrix of order 2times2 and |A|=5, then |A(adjA)|=

    Text Solution

    |

  6. If A is a square matrix of order n, where |A|=5 and |A(adjA)|= 125, th...

    Text Solution

    |

  7. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |

  8. If A=[[2, -1, 1], [1, 2, 1], [-1, 1, 3]], then |adj(adjA)|=

    Text Solution

    |

  9. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  10. If A=[[1, 2, 3], [1, 4, 9], [1, 8, 27]], then the value of |adjA| is

    Text Solution

    |

  11. If P=[[1, alpha, 3], [1, 3, 3], [2, 4, 4]] is the adjoint of 3times3 m...

    Text Solution

    |

  12. If A is a matrix of order 3 and |A|=8, then |adjA|=

    Text Solution

    |

  13. For a 3xx3 matrix A if |A|=4, then|Adj.A| is (A) Both A and R are true...

    Text Solution

    |

  14. If A is a square matrix of order 3 and |adjA|=25, then |A|=

    Text Solution

    |

  15. If A is a square matrix of order 3 such that A^(-1) exists, then |adjA...

    Text Solution

    |

  16. If A=[[a, 0, 0], [0, a, 0], [0, 0, a]], then |adjA|=

    Text Solution

    |

  17. If A=[[a, 0, 0], [0, a, 0], [0, 0, a]], then |A||adjA|=

    Text Solution

    |

  18. If A=[[3, 0, 0], [0, 3, 0], [0, 0, 3]], then |A||adjA|=

    Text Solution

    |

  19. If A is a square matrix of order 3 and |A|=-2, then the value of the d...

    Text Solution

    |

  20. If A=[[0, 1, -1], [2, 1, 3], [3, 2, 1]], then (A(adjA)A^(-1))A=

    Text Solution

    |