Home
Class 12
MATHS
If for the matrix A, A^(5)=I, then A^(-1...

If for the matrix A, `A^(5)=I`, then `A^(-1)=`

A

`A^(2)`

B

`A^(3)`

C

`A`

D

`A^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inverse of the matrix \( A \) given that \( A^5 = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Start with the given equation**: \[ A^5 = I \] 2. **Rewrite \( A^5 \)**: We can express \( A^5 \) as: \[ A^5 = A \cdot A^4 \] Therefore, we have: \[ A \cdot A^4 = I \] 3. **Multiply both sides by \( A^{-1} \)**: To isolate \( A^4 \), we multiply both sides of the equation by \( A^{-1} \): \[ A^{-1} \cdot (A \cdot A^4) = A^{-1} \cdot I \] 4. **Apply the property of inverses**: Using the property that \( A^{-1} \cdot A = I \): \[ I \cdot A^4 = A^{-1} \] This simplifies to: \[ A^4 = A^{-1} \] 5. **Conclusion**: Thus, we find that: \[ A^{-1} = A^4 \] ### Final Answer: \[ A^{-1} = A^4 \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If for the matrix A, A^(3)=I , then A^(-1)=

If A is a non-singular square matrix such that A^(2)-7A+5I=0, then A^(-1)

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

If the matrix A={:[(5,-3),(5,-3)]:}," then "A^(n+1) = ________ .

If A is non-singular matrix and (A+I)(A-I) = 0 then A+A^(-1)= . . .

For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal to (where, I is the identity matrix of the same order of matrix A)

If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then A^(-1) is equal to

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]

If A is a square matrix such that A^(2)=1 then (A-I)^(3)+(A+I)^(3)-7A is equal to

" 1.If "B" is an idempotent matrix and "A=I-B" then "AB=

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[0, 1, -1], [2, 1, 3], [3, 2, 1]], then (A(adjA)A^(-1))A=

    Text Solution

    |

  2. If for the matrix A, A^(3)=I, then A^(-1)=

    Text Solution

    |

  3. If for the matrix A, A^(5)=I, then A^(-1)=

    Text Solution

    |

  4. If A and B are square matrices of the same order and AB=3I, then A^(-1...

    Text Solution

    |

  5. If A^(2)-A+I=0, then A^(-1)=

    Text Solution

    |

  6. If A is a square matrix satisfying the equation A^(2)-4A-5I=0, then A^...

    Text Solution

    |

  7. If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0, then I=

    Text Solution

    |

  8. If A is non-singular and (A-2I)(A-4I)=0, then (1)/(6)(A)+(4)/(3)(A^(-1...

    Text Solution

    |

  9. If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then its inverse is

    Text Solution

    |

  10. If A is a non-singular matrix, such that I+A+A^(2)+… +A^(n)=0, then A^...

    Text Solution

    |

  11. If A is an 3x3 non-singular matrix such that AA^(prime)-A^(prime)A a n...

    Text Solution

    |

  12. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  13. If A and B are square matrices of the same order such that (A+B)(A-B)=...

    Text Solution

    |

  14. For a square matrix A and a non-singular matrix B, of the same order, ...

    Text Solution

    |

  15. If A=[[0, 3], [2, 0]] and A^(-1)=lambda(adjA), then lambda=

    Text Solution

    |

  16. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  17. If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k...

    Text Solution

    |

  18. If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3, then...

    Text Solution

    |

  19. If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]], t...

    Text Solution

    |

  20. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |