Home
Class 12
MATHS
If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0...

If `A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0`, then `I=`

A

`(1)/(5)(A)+(7)/(5)(A^(-1))`

B

`(1)/(7)(A)+(5)/(7)(A^(-1))`

C

`(1)/(7)(A)-(5)/(7)(A^(-1))`

D

`(1)/(5)(A)-(7)/(5)(A^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( A^2 - 5A + 7I = 0 \) for \( I \), we will follow these steps: 1. **Write down the given matrix \( A \)**: \[ A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] 2. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] \[ = \begin{pmatrix} 3 \cdot 3 + 1 \cdot (-1) & 3 \cdot 1 + 1 \cdot 2 \\ -1 \cdot 3 + 2 \cdot (-1) & -1 \cdot 1 + 2 \cdot 2 \end{pmatrix} \] \[ = \begin{pmatrix} 9 - 1 & 3 + 2 \\ -3 - 2 & -1 + 4 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] 3. **Substitute \( A^2 \) into the equation \( A^2 - 5A + 7I = 0 \)**: \[ \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - 5 \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} + 7I = 0 \] \[ = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} + 7I = 0 \] 4. **Combine the matrices**: \[ \begin{pmatrix} 8 - 15 & 5 - 5 \\ -5 + 5 & 3 - 10 \end{pmatrix} + 7I = 0 \] \[ = \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} + 7I = 0 \] 5. **Rearranging gives us**: \[ 7I = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] 6. **Divide by 7**: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, the identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

Let A=[[2,3],[-1,2]] .Then A^(2)-4A+7I =

If A=[(2,1),(9,3)] and A^(2)-5A+7I=O , then A^(-1)=

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A is non-singular A^(2)-5A+7I=0 then I=

A=[[1,2-3,0]] then find A^(2)+3A+5I

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A^(2)-A+I=0, then A^(-1)=

    Text Solution

    |

  2. If A is a square matrix satisfying the equation A^(2)-4A-5I=0, then A^...

    Text Solution

    |

  3. If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0, then I=

    Text Solution

    |

  4. If A is non-singular and (A-2I)(A-4I)=0, then (1)/(6)(A)+(4)/(3)(A^(-1...

    Text Solution

    |

  5. If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then its inverse is

    Text Solution

    |

  6. If A is a non-singular matrix, such that I+A+A^(2)+… +A^(n)=0, then A^...

    Text Solution

    |

  7. If A is an 3x3 non-singular matrix such that AA^(prime)-A^(prime)A a n...

    Text Solution

    |

  8. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  9. If A and B are square matrices of the same order such that (A+B)(A-B)=...

    Text Solution

    |

  10. For a square matrix A and a non-singular matrix B, of the same order, ...

    Text Solution

    |

  11. If A=[[0, 3], [2, 0]] and A^(-1)=lambda(adjA), then lambda=

    Text Solution

    |

  12. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  13. If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k...

    Text Solution

    |

  14. If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3, then...

    Text Solution

    |

  15. If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]], t...

    Text Solution

    |

  16. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  17. The element of second row and third column in the inverse of [[1, 2, -...

    Text Solution

    |

  18. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  19. If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is deno...

    Text Solution

    |

  20. If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1]...

    Text Solution

    |