Home
Class 12
MATHS
If A is non-singular and (A-2I)(A-4I)=0,...

If A is non-singular and `(A-2I)(A-4I)=0`, then `(1)/(6)(A)+(4)/(3)(A^(-1))=`

A

`I`

B

`0`

C

`2I`

D

`6I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ (A - 2I)(A - 4I) = 0 \] ### Step 1: Expand the equation We can expand the left-hand side: \[ A^2 - 4AI - 2AI + 8I = 0 \] This simplifies to: \[ A^2 - 6AI + 8I = 0 \] ### Step 2: Rearrange the equation Rearranging gives us: \[ A^2 - 6A + 8I = 0 \] ### Step 3: Isolate \(A^2\) We can isolate \(A^2\): \[ A^2 = 6A - 8I \] ### Step 4: Multiply both sides by \(A^{-1}\) Since \(A\) is non-singular, we can multiply both sides by \(A^{-1}\): \[ A^{-1}A^2 = A^{-1}(6A - 8I) \] This simplifies to: \[ A = 6I - 8A^{-1} \] ### Step 5: Rearrange to find \(A^{-1}\) Rearranging gives us: \[ 8A^{-1} = 6I - A \] Dividing by 8: \[ A^{-1} = \frac{6}{8}I - \frac{1}{8}A = \frac{3}{4}I - \frac{1}{8}A \] ### Step 6: Substitute \(A^{-1}\) into the expression Now we substitute \(A^{-1}\) into the expression we need to evaluate: \[ \frac{1}{6}A + \frac{4}{3}A^{-1} \] Substituting \(A^{-1}\): \[ \frac{1}{6}A + \frac{4}{3}\left(\frac{3}{4}I - \frac{1}{8}A\right) \] ### Step 7: Simplify the expression This becomes: \[ \frac{1}{6}A + \left(I - \frac{1}{6}A\right) \] Combining the terms: \[ \frac{1}{6}A - \frac{1}{6}A + I = I \] ### Final Result Thus, we conclude that: \[ \frac{1}{6}A + \frac{4}{3}A^{-1} = I \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A is non-singular and (A-2I)(A-4I)=O, then (1)/(6)A+(4)/(3)A^(-1) is equal to OI b.2I c.6I d.I

If A is a non-singular matrix and (A-3I)(A-5I)=0 then (1)/(8)A+(15)/(8)A^(-1) =......... (a) 0 (b) 2I (c) 8I (d) I.

If A is non-singular and (A-2I) (A-4I) = O , then 1/6 A + 4/3 A^(-1) is equal to

If A is a non-singular matrix such that (A-2I)(A-4I)=0 , then (A+ 8 A^(-1)) = .....

If A is non-singular matrix and (A+I)(A-I) = 0 then A+A^(-1)= . . .

If A is non-singular A^(2)-5A+7I=0 then I=

If A is a non-singular square matrix such that A^(2)-7A+5I=0, then A^(-1)

If A is 3xx3 non-singular matrix such that A^(-1)+(adj.A)=0," then det "(A)=

If A,B are two n xx n non-singular matrices, then (1)AB is non-singular (2)AB is singular (3)(AB)^(-1)=A^(-1)B^(-1)(4)(AB)^(-1) does not exist

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A is a square matrix satisfying the equation A^(2)-4A-5I=0, then A^...

    Text Solution

    |

  2. If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0, then I=

    Text Solution

    |

  3. If A is non-singular and (A-2I)(A-4I)=0, then (1)/(6)(A)+(4)/(3)(A^(-1...

    Text Solution

    |

  4. If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then its inverse is

    Text Solution

    |

  5. If A is a non-singular matrix, such that I+A+A^(2)+… +A^(n)=0, then A^...

    Text Solution

    |

  6. If A is an 3x3 non-singular matrix such that AA^(prime)-A^(prime)A a n...

    Text Solution

    |

  7. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  8. If A and B are square matrices of the same order such that (A+B)(A-B)=...

    Text Solution

    |

  9. For a square matrix A and a non-singular matrix B, of the same order, ...

    Text Solution

    |

  10. If A=[[0, 3], [2, 0]] and A^(-1)=lambda(adjA), then lambda=

    Text Solution

    |

  11. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  12. If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k...

    Text Solution

    |

  13. If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3, then...

    Text Solution

    |

  14. If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]], t...

    Text Solution

    |

  15. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  16. The element of second row and third column in the inverse of [[1, 2, -...

    Text Solution

    |

  17. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  18. If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is deno...

    Text Solution

    |

  19. If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1]...

    Text Solution

    |

  20. If the inverse of [[2, -1, 4], [4, -3, 1], [1, 2, 1]] is (1)/(37)[[-5,...

    Text Solution

    |