Home
Class 12
MATHS
If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4...

If `A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3`, then adjA=

A

`(1)/(9)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]]`

B

`[[1, -2, 1], [4, -5, -2], [-2, 4, 1]]`

C

`[[1, 4, -2], [-2, -5, 4], [1, -2, 1]]`

D

`[[-1, -4, -2], [2, 5, 4], [1, -4, 1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of matrix \( A \) given that \( A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{bmatrix} \) and \( |A| = 3 \), we can use the relationship between the inverse of a matrix and its adjoint. ### Step-by-Step Solution: 1. **Recall the formula for the inverse of a matrix**: \[ A^{-1} = \frac{1}{|A|} \cdot \text{adj}(A) \] where \( |A| \) is the determinant of \( A \) and \( \text{adj}(A) \) is the adjoint of \( A \). 2. **Rearranging the formula to find the adjoint**: From the formula, we can express the adjoint as: \[ \text{adj}(A) = |A| \cdot A^{-1} \] 3. **Substituting the known values**: We know that \( |A| = 3 \) and \( A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{bmatrix} \). Thus, we can substitute these values into the equation: \[ \text{adj}(A) = 3 \cdot \left( \frac{1}{3} \begin{bmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{bmatrix} \right) \] 4. **Simplifying the expression**: The multiplication simplifies as follows: \[ \text{adj}(A) = \begin{bmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{bmatrix} \] 5. **Final result**: Therefore, the adjoint of matrix \( A \) is: \[ \text{adj}(A) = \begin{bmatrix} 1 & 4 & -2 \\ -2 & -5 & 4 \\ 1 & -2 & 1 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] , then adjA=

If A=[[1, -2, 2], [0, 2, -3], [3, -2, 4]] , then A(adjA)=

If A=[[2, -3], [4, 1]] , then adjA=

If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]] , then (adjA)A=

If A=[[0, 1, -1], [2, 1, 3], [3, 2, 1]] , then (A(adjA)A^(-1))A=

If A=[[2, 0, -1], [3, 1, 2], [-1, 1, 2]] , then adjA=

If A=[[1, 2, 3], [1, 4, 9], [1, 8, 27]] , then the value of |adjA| is

If A=[[1, 2], [3, 4]] , then A(adjA)=kI, then k=

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

If A={:((1,-3,4),(2,1,-2)):},B={:((-2,-4,5),(1,-1,3)):} and 5A-3B+2X=O, then X=

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  2. If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k...

    Text Solution

    |

  3. If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3, then...

    Text Solution

    |

  4. If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]], t...

    Text Solution

    |

  5. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  6. The element of second row and third column in the inverse of [[1, 2, -...

    Text Solution

    |

  7. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  8. If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is deno...

    Text Solution

    |

  9. If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1]...

    Text Solution

    |

  10. If the inverse of [[2, -1, 4], [4, -3, 1], [1, 2, 1]] is (1)/(37)[[-5,...

    Text Solution

    |

  11. If A=[[costheta, sintheta], [-sintheta, costheta]], then |A^(-1)|=

    Text Solution

    |

  12. If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]], then |A^(-1)|=

    Text Solution

    |

  13. If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]], then |A^(-1)|=

    Text Solution

    |

  14. If A is square matrix of order 3, |A| = 1000 and |kA^-1| = 27, then k ...

    Text Solution

    |

  15. If A=[[4, 5], [2, 5]], then |2A^(-1)|=

    Text Solution

    |

  16. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  17. If A^(-1)=(-1)/(2)[[1, -4], [-1, 2]], then A=

    Text Solution

    |

  18. If A=[[2, -2], [-2, 2]] and B=[[1, 1], [1, 1]], then

    Text Solution

    |

  19. If the multiplicative group of 2times2 matrices of the form [[a, a], [...

    Text Solution

    |

  20. The inverse of matrix [[1, 2], [3, 4]] is

    Text Solution

    |