Home
Class 12
MATHS
If A=[[cosalpha, -sinalpha, 0], [sinalph...

If `A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]]`, then `(adjA)^(-1)=`

A

`[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]]`

B

`[[-cosalpha, sinalpha, 0], [sinalpha, -cosalpha, 0], [0, 0, 1]]`

C

`[[-cosalpha, sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]]`

D

`[[cosalpha, sinalpha, 0], [-sinalpha, cosalpha, 0], [0, 0, 1]]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0], [0, k]] , then k=

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Show : [ [ cosalpha , -sinalpha ] , [ sinalpha , cosalpha ] ]= [ [1 , 0 ] , [ 0 , 1 ]]

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1 is equal to (A) F(-alpha)G(-beta) (B) G(-beta)F(-alpha0 (C) F(alpha^-1)G(beta^-1) (D) G(beta^-1)F(alpha^-1)

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k...

    Text Solution

    |

  2. If A^(-1)=(1)/(3)[[1, 4, -2], [-2, -5, 4], [1, -2, 1]] and |A|=3, then...

    Text Solution

    |

  3. If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]], t...

    Text Solution

    |

  4. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  5. The element of second row and third column in the inverse of [[1, 2, -...

    Text Solution

    |

  6. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  7. If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is deno...

    Text Solution

    |

  8. If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1]...

    Text Solution

    |

  9. If the inverse of [[2, -1, 4], [4, -3, 1], [1, 2, 1]] is (1)/(37)[[-5,...

    Text Solution

    |

  10. If A=[[costheta, sintheta], [-sintheta, costheta]], then |A^(-1)|=

    Text Solution

    |

  11. If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]], then |A^(-1)|=

    Text Solution

    |

  12. If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]], then |A^(-1)|=

    Text Solution

    |

  13. If A is square matrix of order 3, |A| = 1000 and |kA^-1| = 27, then k ...

    Text Solution

    |

  14. If A=[[4, 5], [2, 5]], then |2A^(-1)|=

    Text Solution

    |

  15. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  16. If A^(-1)=(-1)/(2)[[1, -4], [-1, 2]], then A=

    Text Solution

    |

  17. If A=[[2, -2], [-2, 2]] and B=[[1, 1], [1, 1]], then

    Text Solution

    |

  18. If the multiplicative group of 2times2 matrices of the form [[a, a], [...

    Text Solution

    |

  19. The inverse of matrix [[1, 2], [3, 4]] is

    Text Solution

    |

  20. The inverse of matrix [[3, -10], [2, -7]] is

    Text Solution

    |