Home
Class 12
MATHS
The element of second row and third colu...

The element of second row and third column in the inverse of `[[1, 2, -3], [0, 1, 2], [0, 0, 1]]` is

A

`-2`

B

`0`

C

`1`

D

`7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the element of the second row and third column in the inverse of the matrix \( A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix \( A \) The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \] We can expand the determinant along the first column: \[ \text{det}(A) = 1 \cdot \text{det}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - 0 + 0 \] Calculating the determinant of the 2x2 matrix: \[ \text{det}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = (1)(1) - (2)(0) = 1 \] Thus, \[ \text{det}(A) = 1 \cdot 1 = 1 \] ### Step 2: Find the Adjoint of Matrix \( A \) The adjoint of a matrix is the transpose of its cofactor matrix. We need to find the cofactor matrix first. The cofactor \( C_{ij} \) is calculated by taking the determinant of the submatrix formed by deleting the \( i \)-th row and \( j \)-th column, multiplied by \( (-1)^{i+j} \). Calculating the cofactors: - \( C_{11} = \text{det}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = 1 \) - \( C_{12} = -\text{det}\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix} = 0 \) - \( C_{13} = \text{det}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{21} = -\text{det}\begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix} = -2 \) - \( C_{22} = \text{det}\begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} = 1 \) - \( C_{23} = -\text{det}\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{31} = \text{det}\begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix} = 4 \) - \( C_{32} = -\text{det}\begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix} = 1 \) - \( C_{33} = \text{det}\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} = 0 \) So the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -1 & 0 \end{bmatrix} \] Now, the adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{bmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \] ### Step 3: Calculate the Inverse of Matrix \( A \) Since \( \text{det}(A) = 1 \), we have: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) = \text{adj}(A) \] Thus, \[ A^{-1} = \begin{bmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \] ### Step 4: Find the Element of the Second Row and Third Column in \( A^{-1} \) The element in the second row and third column of \( A^{-1} \) is: \[ A^{-1}_{23} = -1 \] ### Final Answer The element of the second row and third column in the inverse of the matrix is \( -1 \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The element of second row and third column in the inverse of [[1, 2, 1], [2, 1, 0], [-1, 0, 1]] is

Find the inverse of [[1,2] , [0,3]]

The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The element in the first row and third column of the inverse of the matrix {:[(1,2,-3),(0,1,2),(0,0,1)]:} , is

The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]], t...

    Text Solution

    |

  2. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  3. The element of second row and third column in the inverse of [[1, 2, -...

    Text Solution

    |

  4. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  5. If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is deno...

    Text Solution

    |

  6. If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1]...

    Text Solution

    |

  7. If the inverse of [[2, -1, 4], [4, -3, 1], [1, 2, 1]] is (1)/(37)[[-5,...

    Text Solution

    |

  8. If A=[[costheta, sintheta], [-sintheta, costheta]], then |A^(-1)|=

    Text Solution

    |

  9. If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]], then |A^(-1)|=

    Text Solution

    |

  10. If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]], then |A^(-1)|=

    Text Solution

    |

  11. If A is square matrix of order 3, |A| = 1000 and |kA^-1| = 27, then k ...

    Text Solution

    |

  12. If A=[[4, 5], [2, 5]], then |2A^(-1)|=

    Text Solution

    |

  13. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  14. If A^(-1)=(-1)/(2)[[1, -4], [-1, 2]], then A=

    Text Solution

    |

  15. If A=[[2, -2], [-2, 2]] and B=[[1, 1], [1, 1]], then

    Text Solution

    |

  16. If the multiplicative group of 2times2 matrices of the form [[a, a], [...

    Text Solution

    |

  17. The inverse of matrix [[1, 2], [3, 4]] is

    Text Solution

    |

  18. The inverse of matrix [[3, -10], [2, -7]] is

    Text Solution

    |

  19. The inverse of matrix [[2, 1], [7, 4]] is

    Text Solution

    |

  20. The inverse of matrix [[2, -3], [5, 7]] is

    Text Solution

    |