Home
Class 12
MATHS
If matrix A=[[1, 0, -1], [3, 4, 5], [0, ...

If matrix `A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]]` and its inverse is denoted by `A^(-1)=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]],` then the value of `a_(23)`=

A

`(-2)/(3)`

B

`(1)/(5)`

C

`(2)/(5)`

D

`(21)/(20)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a_{23} \) in the inverse of the matrix \( A \), we will follow these steps: Given: \[ A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix} \] ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] For our matrix \( A \): - \( a = 1, b = 0, c = -1 \) - \( d = 3, e = 4, f = 5 \) - \( g = 0, h = 6, i = 7 \) Calculating the determinant: \[ \text{det}(A) = 1(4 \cdot 7 - 5 \cdot 6) - 0 + (-1)(3 \cdot 6 - 4 \cdot 0) \] \[ = 1(28 - 30) - 0 - (18 - 0) \] \[ = 1(-2) - 18 = -2 - 18 = -20 \] ### Step 2: Calculate the cofactor matrix of \( A \) The cofactor matrix \( C \) is calculated by finding the determinant of the \( 2 \times 2 \) matrices formed by removing the row and column of each element, with alternating signs. Calculating the cofactors: - \( C_{11} = \text{det}\begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix} = (4 \cdot 7 - 5 \cdot 6) = -2 \) - \( C_{12} = -\text{det}\begin{bmatrix} 3 & 5 \\ 0 & 7 \end{bmatrix} = -(3 \cdot 7 - 5 \cdot 0) = -21 \) - \( C_{13} = \text{det}\begin{bmatrix} 3 & 4 \\ 0 & 6 \end{bmatrix} = (3 \cdot 6 - 4 \cdot 0) = 18 \) - \( C_{21} = -\text{det}\begin{bmatrix} 0 & -1 \\ 6 & 7 \end{bmatrix} = -(-1 \cdot 6 - 0 \cdot 7) = 6 \) - \( C_{22} = \text{det}\begin{bmatrix} 1 & -1 \\ 0 & 7 \end{bmatrix} = (1 \cdot 7 - (-1) \cdot 0) = 7 \) - \( C_{23} = -\text{det}\begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix} = -(1 \cdot 6 - 0 \cdot 0) = -6 \) - \( C_{31} = \text{det}\begin{bmatrix} 0 & -1 \\ 4 & 5 \end{bmatrix} = (0 \cdot 5 - (-1) \cdot 4) = 4 \) - \( C_{32} = -\text{det}\begin{bmatrix} 1 & -1 \\ 3 & 5 \end{bmatrix} = -(1 \cdot 5 - (-1) \cdot 3) = -8 \) - \( C_{33} = \text{det}\begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix} = (1 \cdot 4 - 0 \cdot 3) = 4 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} -2 & -21 & 18 \\ 6 & 7 & -6 \\ 4 & -8 & 4 \end{bmatrix} \] ### Step 3: Transpose the cofactor matrix to get the adjoint The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} -2 & 6 & 4 \\ -21 & 7 & -8 \\ 18 & -6 & 4 \end{bmatrix} \] ### Step 4: Calculate the inverse of matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-20} \cdot \begin{bmatrix} -2 & 6 & 4 \\ -21 & 7 & -8 \\ 18 & -6 & 4 \end{bmatrix} \] \[ = \begin{bmatrix} \frac{1}{10} & -\frac{3}{10} & -\frac{1}{5} \\ \frac{21}{20} & -\frac{7}{20} & \frac{2}{5} \\ -\frac{9}{10} & \frac{3}{10} & -\frac{1}{5} \end{bmatrix} \] ### Step 5: Identify \( a_{23} \) From the inverse matrix \( A^{-1} \), we can see that: \[ a_{23} = \frac{2}{5} \] ### Final Answer Thus, the value of \( a_{23} \) is: \[ \boxed{\frac{2}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(-1)=[(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))] value of a_(32)=

,1+a_(1),a_(2),a_(3)a_(1),1+a_(2),a_(3)a_(1),a_(2),1+a_(3)]|=0, then

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)=

Find the minors and cofactors of the elements of the determinant Delta = |{:(a_(11), a_(12), a_(13)), (a_(21), a_(22), a_(23)), (a_(31), a_(32), a_(33)):}|

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and A_(ij) denote the cofactor of element a_(ij) , then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23)=

If A=[{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}] and A_(ij) is co-factos of a_(ij) , then A is given by :

If for an A.P.a_(1),a_(2),a_(3),......,a_(n),.........a_(1)+a_(3)+a_(5)=-12 and a_(1)a_(2)a_(3)=8 then the value of a_(2)+a_(4)+a_(6) equals

If A=[[1, 1, 0], [2, 1, 5],[1, 2, 1]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(21)+a_(21)A_(22)+a_(13)A_(23)=

IF A=[(1,1,0),(2,1,5),(1,2,1)], then a_(11) A_(21) +a_(12)A_(22)+a_(13)A_(23) =

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. The element of second row and third column in the inverse of [[1, 2, -...

    Text Solution

    |

  2. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  3. If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is deno...

    Text Solution

    |

  4. If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1]...

    Text Solution

    |

  5. If the inverse of [[2, -1, 4], [4, -3, 1], [1, 2, 1]] is (1)/(37)[[-5,...

    Text Solution

    |

  6. If A=[[costheta, sintheta], [-sintheta, costheta]], then |A^(-1)|=

    Text Solution

    |

  7. If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]], then |A^(-1)|=

    Text Solution

    |

  8. If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]], then |A^(-1)|=

    Text Solution

    |

  9. If A is square matrix of order 3, |A| = 1000 and |kA^-1| = 27, then k ...

    Text Solution

    |

  10. If A=[[4, 5], [2, 5]], then |2A^(-1)|=

    Text Solution

    |

  11. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  12. If A^(-1)=(-1)/(2)[[1, -4], [-1, 2]], then A=

    Text Solution

    |

  13. If A=[[2, -2], [-2, 2]] and B=[[1, 1], [1, 1]], then

    Text Solution

    |

  14. If the multiplicative group of 2times2 matrices of the form [[a, a], [...

    Text Solution

    |

  15. The inverse of matrix [[1, 2], [3, 4]] is

    Text Solution

    |

  16. The inverse of matrix [[3, -10], [2, -7]] is

    Text Solution

    |

  17. The inverse of matrix [[2, 1], [7, 4]] is

    Text Solution

    |

  18. The inverse of matrix [[2, -3], [5, 7]] is

    Text Solution

    |

  19. The inverse of matrix [[1, 3], [2, 7]] is

    Text Solution

    |

  20. The inverse of matrix [[2, 1], [1, -1]] is

    Text Solution

    |