Home
Class 12
MATHS
If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] a...

If `A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1], [8, -6, -2k], [-5, 3, -1]]`, then

A

`a=-1, k=1`

B

`a=1, k=-1`

C

`a=2, k=(-1)/(2)`

D

`a=(1)/(2), k=(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( k \) in the matrix \( A \) and its inverse \( A^{-1} \). Given: \[ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix} \] and \[ A^{-1} = -\frac{1}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & -2k \\ -5 & 3 & -1 \end{bmatrix} \] ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 0 \cdot (2 \cdot 1 - 3 \cdot a) - 1 \cdot (1 \cdot 1 - 3 \cdot 3) + 2 \cdot (1 \cdot a - 2 \cdot 3) \] Calculating this: \[ = 0 - 1 \cdot (1 - 9) + 2 \cdot (a - 6) \] \[ = 8 + 2a - 12 \] \[ = 2a - 4 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactors of each element in \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \begin{vmatrix} 2 & 3 \\ a & 1 \end{vmatrix} = 2 \cdot 1 - 3 \cdot a = 2 - 3a \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = - (1 \cdot 1 - 3 \cdot 3) = - (1 - 9) = 8 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \begin{vmatrix} 1 & 2 \\ 3 & a \end{vmatrix} = 1 \cdot a - 2 \cdot 3 = a - 6 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\begin{vmatrix} 1 & 2 \\ a & 1 \end{vmatrix} = - (1 \cdot 1 - 2 \cdot a) = - (1 - 2a) = 2a - 1 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \begin{vmatrix} 0 & 2 \\ 3 & 1 \end{vmatrix} = 0 \cdot 1 - 2 \cdot 3 = -6 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\begin{vmatrix} 0 & 1 \\ 3 & a \end{vmatrix} = - (0 \cdot a - 1 \cdot 3) = 3 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = 1 \cdot 3 - 2 \cdot 2 = 3 - 4 = -1 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix} = - (0 \cdot 3 - 2 \cdot 1) = 2 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix} = 0 \cdot 2 - 1 \cdot 1 = -1 \] Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 2 - 3a & 8 & a - 6 \\ 2a - 1 & -6 & 3 \\ -1 & 2 & -1 \end{bmatrix} \] The adjoint \( \text{adj}(A) \) is the transpose of \( C \): \[ \text{adj}(A) = \begin{bmatrix} 2 - 3a & 2a - 1 & -1 \\ 8 & -6 & 2 \\ a - 6 & 3 & -1 \end{bmatrix} \] ### Step 3: Calculate \( A^{-1} \) Using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{2a - 4} \begin{bmatrix} 2 - 3a & 2a - 1 & -1 \\ 8 & -6 & 2 \\ a - 6 & 3 & -1 \end{bmatrix} \] ### Step 4: Set \( A^{-1} \) Equal to the Given Inverse We have: \[ -\frac{1}{2} \begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & -2k \\ -5 & 3 & -1 \end{bmatrix} \] Setting the two expressions for \( A^{-1} \) equal to each other, we can compare corresponding elements. ### Step 5: Solve for \( a \) and \( k \) 1. From the first element: \[ \frac{2 - 3a}{2a - 4} = \frac{1}{2} \] Cross-multiplying gives: \[ 2(2 - 3a) = (2a - 4) \implies 4 - 6a = 2a - 4 \implies 8 = 8a \implies a = 1 \] 2. From the second row, third column: \[ \frac{2}{2a - 4} = -k \] Substituting \( a = 1 \): \[ \frac{2}{2(1) - 4} = -k \implies \frac{2}{2 - 4} = -k \implies \frac{2}{-2} = -k \implies -1 = -k \implies k = 1 \] ### Final Answer Thus, the values are: \[ a = 1, \quad k = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[5//2,-3//2,1//2]] then

A=[[3, 2, 6], [1, 1, 2], [2, 2, 5]], B=[[1, 2, -2], [-1, 3, 0], [0, -2, 1]] , then

If A = [[-1, 2 ,3],[-1, 0, 2],[1, -3, 1]] and B = [[4,5,6],[-1, 0, 1], [2,1,2]], find 4A-3B

If A=[[-3,1,2],[0,0,1],[-3,5,0]] ,then 8|A|

If A=[[1,1,3],[5,2,6],[-2,-1,-3]] .Then |A| is

If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),(5//2,-3//2,1//2)] , then the values of a and c are equal to

If A=[[0,1,3],[1,2,x],[2,3,1]] and A^(-1)=[[(1)/(2),-4,(5)/(2)],[-(1)/(2),3,-(3)/(2)],[(1)/(2),y,(1)/(2)]] . Find x,y

If A=[[1,1,3],[5,2,6],[-2,-1,-3]] then A is

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  2. If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is deno...

    Text Solution

    |

  3. If A=[[0, 1, 2], [1, 2, 3], [3, a, 1]] and A^(-1)=(-1)/(2)[[-1, 1, -1]...

    Text Solution

    |

  4. If the inverse of [[2, -1, 4], [4, -3, 1], [1, 2, 1]] is (1)/(37)[[-5,...

    Text Solution

    |

  5. If A=[[costheta, sintheta], [-sintheta, costheta]], then |A^(-1)|=

    Text Solution

    |

  6. If A=[[1, -1, 2], [0, 2, -3], [3, -2, 4]], then |A^(-1)|=

    Text Solution

    |

  7. If A=[[1, 2, 3], [1, 3, 4], [3, 4, 3]], then |A^(-1)|=

    Text Solution

    |

  8. If A is square matrix of order 3, |A| = 1000 and |kA^-1| = 27, then k ...

    Text Solution

    |

  9. If A=[[4, 5], [2, 5]], then |2A^(-1)|=

    Text Solution

    |

  10. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  11. If A^(-1)=(-1)/(2)[[1, -4], [-1, 2]], then A=

    Text Solution

    |

  12. If A=[[2, -2], [-2, 2]] and B=[[1, 1], [1, 1]], then

    Text Solution

    |

  13. If the multiplicative group of 2times2 matrices of the form [[a, a], [...

    Text Solution

    |

  14. The inverse of matrix [[1, 2], [3, 4]] is

    Text Solution

    |

  15. The inverse of matrix [[3, -10], [2, -7]] is

    Text Solution

    |

  16. The inverse of matrix [[2, 1], [7, 4]] is

    Text Solution

    |

  17. The inverse of matrix [[2, -3], [5, 7]] is

    Text Solution

    |

  18. The inverse of matrix [[1, 3], [2, 7]] is

    Text Solution

    |

  19. The inverse of matrix [[2, 1], [1, -1]] is

    Text Solution

    |

  20. The inverse of matrix [[1, -1], [2, 3]] is

    Text Solution

    |