Home
Class 12
MATHS
If A^(-1)=(-1)/(2)[[1, -4], [-1, 2]], th...

If `A^(-1)=(-1)/(2)[[1, -4], [-1, 2]]`, then A=

A

`[[2, 4], [1, 1]]`

B

`[[1, -4], [-1, 2]]`

C

`[[2, 4], [-1, 1]]`

D

`[[1, 1], [4, 2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) given that \( A^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix} \), we can follow these steps: ### Step 1: Write down the expression for \( A^{-1} \) We have: \[ A^{-1} = -\frac{1}{2} \begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix} \] ### Step 2: Multiply the matrix by -2 to find \( A \) To find \( A \), we take the inverse of \( A^{-1} \). Since \( A^{-1} = -\frac{1}{2} B \) where \( B = \begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix} \), we can express \( A \) as: \[ A = -2 A^{-1} \] Substituting \( A^{-1} \): \[ A = -2 \left(-\frac{1}{2} \begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix}\right) \] \[ A = \begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix} \] ### Step 3: Adjust the matrix to find the correct form of \( A \) Now, we need to adjust the matrix \( A \) based on the properties of the adjoint. The adjoint of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Given that the adjoint of \( A \) is \( \begin{pmatrix} 1 & -4 \\ -1 & 2 \end{pmatrix} \), we can find \( A \) by swapping the diagonal elements and changing the signs of the off-diagonal elements: \[ A = \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix} \] ### Step 4: Conclusion Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix} \] ### Final Answer The correct option is the first one: \( \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix} \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x], [y], [z]] and AX=B then X=

If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B , then X=

The co-factors of the elements of third row of [[1, -1, 2], [3, 1, 4], [1, 2, 3]] are

Let X=[(x),(y),(z)] D=[(3),(5),(11 )] and A=[(1,-1,-2),(4,1,1),(4,-1,-2)] , if X=A^(-1)D , then X is equal to

Let X= [[x],[y],[z]] ,D= [[3],[5],[11]] and A=[[1,-1,-2],[2,1,1],[4,-1,-2]] , if X=A^-1D , then X is equal to

Find lim_ (n rarr oo) [(n ^ (4) +1) ^ ((1) / (2)) - (n ^ (4) -1) ^ ((1) / (2))] -: n ^ (- 2)

(7)/(11)-"[1 (1)/(2)-[(1)/(2)+(1(3)/(4)-(1)/(2)+(1)/(3))]]

a^(2)+b^(2)+c^(2)=1 thentherangeo fa[1,oo)(-(1)/(2),1)4)[-(1)/(2),1]]

The sum of the first 35 terms of the series (1)/(2) + (1)/(3) -(1)/(4) -(1)/(2) -(1)/(3) +(1)/(4) +(1)/(2) + (1)/(3) -(1)/(4)