Home
Class 12
MATHS
If A=[[2, -2], [-2, 2]] and B=[[1, 1], [...

If `A=[[2, -2], [-2, 2]] and B=[[1, 1], [1, 1]]`, then

A

`A^(-1)=B`

B

`B^(-1)` exists

C

`A^(-1)` does not exists

D

`A^(-1)` exists

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrices \( A \) and \( B \) given as follows: \[ A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \] We need to determine the existence of the inverses of these matrices. ### Step 1: Calculate the determinant of matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For matrix \( A \): - \( a = 2 \) - \( b = -2 \) - \( c = -2 \) - \( d = 2 \) Calculating the determinant: \[ \text{det}(A) = (2)(2) - (-2)(-2) = 4 - 4 = 0 \] ### Step 2: Determine if \( A^{-1} \) exists Since the determinant of \( A \) is \( 0 \), the inverse of matrix \( A \) does not exist. ### Step 3: Calculate the determinant of matrix \( B \) Now, we calculate the determinant of matrix \( B \): For matrix \( B \): - \( a = 1 \) - \( b = 1 \) - \( c = 1 \) - \( d = 1 \) Calculating the determinant: \[ \text{det}(B) = (1)(1) - (1)(1) = 1 - 1 = 0 \] ### Step 4: Determine if \( B^{-1} \) exists Since the determinant of \( B \) is also \( 0 \), the inverse of matrix \( B \) does not exist. ### Conclusion 1. \( A^{-1} \) does not exist because \( \text{det}(A) = 0 \). 2. \( B^{-1} \) does not exist because \( \text{det}(B) = 0 \). Thus, the correct option is that \( A^{-1} \) does not exist.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A= [[2,4,-1],[-1,0,2]], B=[[3,4],[-1,2],[2,1]] , Show that (AB)'=B'A' .

If A=[[1,-1],[2,-1]] , B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) ,then find the values of a and b

If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B , then X=

If A=[(1,-2,1),(2,1,3)] and B=[(2,1),(3,2),(1,1)] then (AB)' is equal to

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)], then find 2A-B.

A=[(2,-2),(-2,2)], B=[(1,1),(1,1)] then

If A=[[1,-1],[2,-1]],B=[[a,1],[b,-1]] and (A+B)^(2)=A^(2)+B^(2) , the value of a+b is

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

If A=[[1,-12,-1]] and B=[[a,1b,-1]] and (A+B)^(2),=A^(2)+B^(2), then find the value of a and b.

If A=[[a,b],[-1,2]],B=[[1,1],[2,4]] and (A+B)(A-B)=A^(2)-B^(2) , then the value of a+b equals