Home
Class 12
MATHS
The inverse of matrix [[1, 2], [3, 4]] i...

The inverse of matrix `[[1, 2], [3, 4]]` is

A

`(-1)/(2)[[4, -2], [-3, 1]]`

B

`(1)/(2)[[4, -2], [-3, 1]]`

C

`(-1)/(2)[[4, -3], [3, 1]]`

D

`(1)/(2)[[4, -3], [-2, 1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 1 \) - \( b = 2 \) - \( c = 3 \) - \( d = 4 \) Calculating the determinant: \[ \text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -2 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a 2x2 matrix is given by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. The adjoint of \( A \) is calculated as follows: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix \( A \) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-2} \cdot \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \] This simplifies to: \[ A^{-1} = \begin{bmatrix} \frac{4}{-2} & \frac{-2}{-2} \\ \frac{-3}{-2} & \frac{1}{-2} \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) is: \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of matrix [[-1, 5], [-3, 2]] is

The inverse of matrix [[1, 2], [2, -1]] is

The inverse of matrix [[2, -2], [4, 3]] is

The inverse of matrix [[1, -1], [2, 3]] is

The inverse of matrix [[2, 1], [7, 4]] is

The inverse of matrix [[1, 3], [2, 7]] is

The inverse of matrix [[2, -3], [-1, 2]] is

The inverse of matrix [[2, 1], [1, -1]] is

The inverse of matrix [[2, -3], [5, 7]] is

The inverse of the matrix [[5,-2],[3,1]] is