Home
Class 12
MATHS
The inverse of matrix [[3, -10], [2, -7]...

The inverse of matrix `[[3, -10], [2, -7]]` is

A

`-[[-7, -2], [10, 3]]`

B

`[[-7, -2], [10, 3]]`

C

`-[[-7, 10], [-2, 3]]`

D

`[[-7, 10], [-2, 3]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 3 & -10 \\ 2 & -7 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 3 \) - \( b = -10 \) - \( c = 2 \) - \( d = -7 \) Now, substituting these values into the determinant formula: \[ \text{det}(A) = (3)(-7) - (-10)(2) = -21 + 20 = -1 \] ### Step 2: Find the Adjoint of Matrix A To find the adjoint of a \( 2 \times 2 \) matrix, we swap the elements on the main diagonal and change the signs of the off-diagonal elements. The adjoint of matrix \( A \) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] Substituting the values from matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} -7 & 10 \\ -2 & 3 \end{bmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the determinant and the adjoint: \[ A^{-1} = \frac{1}{-1} \cdot \begin{bmatrix} -7 & 10 \\ -2 & 3 \end{bmatrix} = -1 \cdot \begin{bmatrix} -7 & 10 \\ -2 & 3 \end{bmatrix} \] This simplifies to: \[ A^{-1} = \begin{bmatrix} 7 & -10 \\ 2 & -3 \end{bmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A = \begin{bmatrix} 3 & -10 \\ 2 & -7 \end{bmatrix} \) is: \[ A^{-1} = \begin{bmatrix} 7 & -10 \\ 2 & -3 \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of matrix [[1, -1], [2, 3]] is

The inverse of matrix [[2, -3], [5, 7]] is

The inverse of matrix [[1, 2], [2, -1]] is

The inverse of matrix [[1, 3], [2, 7]] is

Inverse of a matrix

The inverse of matrix [[2, 1], [7, 4]] is

The inverse of matrix [[2, -2], [4, 3]] is

The inverse of matrix A=[[2, -3], [-4, 2]] is

The inverse of matrix [[2, -3], [-1, 2]] is

The inverse of matrix [[1, 2], [3, 4]] is