Home
Class 12
MATHS
The inverse of matrix [[1, 3], [2, 7]] i...

The inverse of matrix `[[1, 3], [2, 7]]` is

A

`[[7, -3], [-2, 1]]`

B

`[[-7, 3], [2, -1]]`

C

`[[7, -2], [-3, 1]]`

D

`[[-7, 2], [3, -1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \(\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}\), we will follow these steps: ### Step 1: Calculate the Determinant The determinant of a \(2 \times 2\) matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \(A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}\): - \(a = 1\), \(b = 3\), \(c = 2\), \(d = 7\) Calculating the determinant: \[ \text{det}(A) = (1)(7) - (2)(3) = 7 - 6 = 1 \] ### Step 2: Calculate the Adjoint The adjoint of a \(2 \times 2\) matrix is obtained by swapping the elements on the main diagonal and changing the signs of the elements on the other diagonal. For the matrix \(A\): \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} \] ### Step 3: Calculate the Inverse The inverse of a matrix \(A\) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{1} \cdot \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} \] ### Final Answer Thus, the inverse of the matrix \(\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}\) is: \[ \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of matrix [[2, -3], [5, 7]] is

The inverse of matrix [[1, -1], [2, 3]] is

The inverse of matrix [[1, 2], [2, -1]] is

The inverse of matrix [[3, -10], [2, -7]] is

The inverse of matrix [[2, -3], [-1, 2]] is

The inverse of matrix [[1, 2], [3, 4]] is

The inverse of matrix [[-1, 5], [-3, 2]] is

The inverse of matrix [[2, 1], [1, -1]] is

The inverse of matrix [[2, -2], [4, 3]] is

The inverse of matrix [[2, 1], [7, 4]] is