Home
Class 12
MATHS
The inverse of matrix [[2, 1], [1, -1]] ...

The inverse of matrix `[[2, 1], [1, -1]]` is

A

`-[[1, 1], [1, -2]]`

B

`[[1, 1], [1, -2]]`

C

`(-1)/(3)[[1, 1], [1, -2]]`

D

`(1)/(3)[[1, 1], [1, -2]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = 1 \) - \( c = 1 \) - \( d = -1 \) Calculating the determinant: \[ \text{det}(A) = (2)(-1) - (1)(1) = -2 - 1 = -3 \] ### Step 2: Find the Adjoint of Matrix A The adjoint (or adjugate) of a 2x2 matrix is obtained by swapping the elements on the main diagonal and changing the signs of the elements on the other diagonal. For matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-3} \cdot \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} \] ### Step 4: Multiply by the Scalar Now we multiply each element of the adjoint matrix by \( \frac{1}{-3} \): \[ A^{-1} = \begin{bmatrix} \frac{-1}{-3} & \frac{-1}{-3} \\ \frac{-1}{-3} & \frac{2}{-3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \] Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of matrix [[1, 2], [2, -1]] is

The inverse of matrix [[2, -3], [-1, 2]] is

The inverse of matrix [[2, 1], [7, 4]] is

The inverse of matrix [[1, -1], [2, 3]] is

The inverse of matrix [[-1, 5], [-3, 2]] is

The inverse of matrix [[1, 2], [3, 4]] is

The inverse of matrix [[1, 3], [2, 7]] is

The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is