Home
Class 12
MATHS
The inverse of matrix [[1, -1], [2, 3]] ...

The inverse of matrix `[[1, -1], [2, 3]]` is

A

`(1)/(5)[[3, -1], [-2, 1]]`

B

`(1)/(5)[[3, 1], [-2, 1]]`

C

`(1)/(5)[[-3, 1], [-2, 1]]`

D

`(1)/(5)[[3, -1], [2, -1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ a = 1, \quad b = -1, \quad c = 2, \quad d = 3 \] Calculating the determinant: \[ \text{det}(A) = (1)(3) - (2)(-1) = 3 + 2 = 5 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a 2x2 matrix is obtained by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. The adjoint of matrix \( A \) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] Substituting the values from matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the determinant and the adjoint we calculated: \[ A^{-1} = \frac{1}{5} \cdot \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix} \] Calculating the inverse: \[ A^{-1} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \) is: \[ A^{-1} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of matrix [[1, 3], [2, 7]] is

The inverse of matrix [[1, 2], [2, -1]] is

The inverse of matrix [[2, -3], [-1, 2]] is

The inverse of matrix [[-1, 5], [-3, 2]] is

The inverse of matrix [[2, 1], [1, -1]] is

The inverse of matrix [[1, 2], [3, 4]] is

The inverse of matrix [[2, 1], [7, 4]] is

The inverse of the matrix [[5,-2],[3,1]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is