Home
Class 12
MATHS
If A=[[i, 0], [0, (i)/(2)]], then A^(-1)...

If `A=[[i, 0], [0, (i)/(2)]]`, then `A^(-1)=`

A

`[[i, 0], [0, (i)/(2)]]`

B

`[[i, 0], [0, 2i]]`

C

`[[-i, 0], [0, -2i]]`

D

`[[0, i], [2i, 0]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} i & 0 \\ 0 & \frac{i}{2} \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a 2x2 matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = i \) - \( b = 0 \) - \( c = 0 \) - \( d = \frac{i}{2} \) Thus, the determinant is: \[ \text{det}(A) = i \cdot \frac{i}{2} - 0 \cdot 0 = \frac{i^2}{2} = \frac{-1}{2} \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a 2x2 matrix is given by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements. For our matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} \frac{i}{2} & 0 \\ 0 & i \end{bmatrix} \] ### Step 3: Calculate the Inverse of \( A \) The inverse of a matrix is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{\left(-\frac{1}{2}\right)} \cdot \begin{bmatrix} \frac{i}{2} & 0 \\ 0 & i \end{bmatrix} \] This simplifies to: \[ A^{-1} = -2 \cdot \begin{bmatrix} \frac{i}{2} & 0 \\ 0 & i \end{bmatrix} = \begin{bmatrix} -i & 0 \\ 0 & -2i \end{bmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{bmatrix} -i & 0 \\ 0 & -2i \end{bmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

1.If A=[[i,0],[0,-i]] then show that A^(2)=-I

If A=[[i,0],[0,i]];i=sqrt(-1), then A^(n) is equal to

If A^(2)-A+I=0 , then A^(-1)=

If A=[[0,0],[0,i]], where i=sqrt(-1), then

If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0 , then I=

If I=[[1,0],[0,1]] , then I^4=

If |Al!=0 and (A-2I)(A-3I)=0 then A^(-1) is

If A^(2)-A+I=0 then A^(-1) is