Home
Class 12
MATHS
Inverse of the matrix A=[[cos2theta, -si...

Inverse of the matrix `A=[[cos2theta, -sin2theta], [sin2theta, cos2theta]]` is

A

`[[cos2theta, sin2theta], [sin2theta, cos2theta]]`

B

`[[cos2theta, sin2theta], [-sin2theta, cos2theta]]`

C

`[[cos2theta, -sin2theta], [sin2theta, cos2theta]]`

D

`[[cos2theta, sin2theta], [sin2theta, -cos2theta]]`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

Inverse of the matrix [[cos2 theta,-sin2 thetasin2 theta,cos2 theta]] is

Inverse of the matrix [[cos2 theta,-sin2 thetasin2 theta,cos2 theta]] is

Knowledge Check

  • Inverse of the matrix [(cos 2 theta,-sin 2theta),(sin 2 theta, cos 2theta)] is

    A
    `[(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta)]`
    B
    `[(cos 2 theta, sin 2theta),(sin 2 theta, -cos 2 theta)]`
    C
    `[(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta)]`
    D
    `[(cos 2 theta, sin 2 theta),(-sin 2 theta, cos 2 theta)]`
  • Inverse of the matrix [{:(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta):}] is

    A
    `[{:(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta):}]`
    B
    `[{:(cos 2 theta, sin 2 theta),(sin 2 theta, -cos 2 theta):}]`
    C
    `[{:(cos 2 theta, sin 2 theta),(sin 2 theta, cos 2 theta):}]`
    D
    `[{:(cos 2 theta, sin 2 theta),(-sin 2 theta, cos 2 theta):}]`
  • Similar Questions

    Explore conceptually related problems

    If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]] , find A^2

    If A=[[cos2 theta,sin2 theta],[-sin2 theta,cos2 theta]] then find A^2

    What is the inverse of the matrix A= ({:(cos theta, sin theta ,0),(- sin theta, cos theta,0),(0 , 0, 1):})

    If A=[cos2 theta sin2 theta-sin2 theta cos2 theta], find A^(2)

    if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]

    The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,cos theta)]is