Home
Class 12
MATHS
If A=[[2, -3], [5, -7]], then A+A^(-1)=...

If `A=[[2, -3], [5, -7]]`, then `A+A^(-1)=`

A

`[[1, 0], [0, 1]]`

B

`[[-5, 0], [0, -5]]`

C

`[[5, 0], [0, 5]]`

D

`[[4, 0], [0, -5]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( A + A^{-1} \) where \( A = \begin{bmatrix} 2 & -3 \\ 5 & -7 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of A The determinant of a 2x2 matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = -3 \) - \( c = 5 \) - \( d = -7 \) Calculating the determinant: \[ \text{det}(A) = (2)(-7) - (-3)(5) = -14 + 15 = 1 \] ### Step 2: Calculate the Adjoint of A The adjoint of a 2x2 matrix \( A \) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} -7 & 3 \\ -5 & 2 \end{bmatrix} \] ### Step 3: Calculate the Inverse of A The inverse of a matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \begin{bmatrix} -7 & 3 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} -7 & 3 \\ -5 & 2 \end{bmatrix} \] ### Step 4: Calculate \( A + A^{-1} \) Now we add \( A \) and \( A^{-1} \): \[ A + A^{-1} = \begin{bmatrix} 2 & -3 \\ 5 & -7 \end{bmatrix} + \begin{bmatrix} -7 & 3 \\ -5 & 2 \end{bmatrix} \] Adding the respective elements: \[ = \begin{bmatrix} 2 + (-7) & -3 + 3 \\ 5 + (-5) & -7 + 2 \end{bmatrix} = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix} \] ### Final Answer Thus, \( A + A^{-1} = \begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix} \). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A={1,2,3} and B={1,3,5,7}, then A uu B={1,2,3,5,7}

If A=[[-1,2,3],[5,7,9],[-2,1,1]] and B=[[-4,1,-5],[1,2,0],[1,3,1]] , then verify that (i) (A+B)'=A'+B' (ii) (A-B)'=A'-B'

If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then (A+B)^(prime)=A^(prime)-B^(prime) is true or false

If =[[2,3,4],[1,2,3],[4,-5,7]], B= [[2,5,-1],[3,-1,2],[7,2,-3]] , verify that (A+B)'=A'+B'

If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then verify that (i) (A+B)^(prime)=A^(prime)+B^(prime) (ii) (A-B)^(prime)=A^(prime)-B^(prime)

If A=[(2, 3),( 5 ,7)] , B=[(-1 ,0, 2),( 3, 4, 1)] , C=[(-1, 2 ,3),( 2 ,1, 0)] , find A+B and B+C (ii) 2B+3A and 3C-4B .

If A=[[2,5],[3,7]] and B=[[1,3],[4,8]] ,then find AB.

If A={2,3,5,7,11} and B={1,3,5,7,9} then find A-B and B-A