Home
Class 12
MATHS
If A=[[3, 2], [0, 1]], then (A^(-1))^(3)...

If `A=[[3, 2], [0, 1]]`, then `(A^(-1))^(3)=`

A

`(1)/(27)[[-1, 26], [0, 27]]`

B

`(1)/(27)[[1, -26], [0, 27]]`

C

`(1)/(27)[[1, -26], [0, -27]]`

D

`(1)/(27)[[-1, -26], [0, -27]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the cube of the inverse of the matrix \( A \), where \( A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix} \). ### Step 1: Calculate the Determinant of \( A \) The determinant of a \( 2 \times 2 \) matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): \[ \text{det}(A) = (3)(1) - (2)(0) = 3 - 0 = 3 \] ### Step 2: Check if the Inverse Exists Since the determinant \( \text{det}(A) = 3 \) is not equal to 0, the inverse of \( A \) exists. ### Step 3: Calculate the Adjoint of \( A \) The adjoint of a \( 2 \times 2 \) matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \] ### Step 4: Calculate the Inverse of \( A \) The inverse of the matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{3} \cdot \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} \\ 0 & 1 \end{bmatrix} \] ### Step 5: Calculate \( (A^{-1})^3 \) To find \( (A^{-1})^3 \), we first need to calculate \( (A^{-1})^2 \): \[ A^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} \\ 0 & 1 \end{bmatrix} \] Now, we multiply \( A^{-1} \) by itself: \[ (A^{-1})^2 = A^{-1} \cdot A^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} \\ 0 & 1 \end{bmatrix} \] Calculating the product: - First row, first column: \( \frac{1}{3} \cdot \frac{1}{3} + (-\frac{2}{3}) \cdot 0 = \frac{1}{9} \) - First row, second column: \( \frac{1}{3} \cdot (-\frac{2}{3}) + (-\frac{2}{3}) \cdot 1 = -\frac{2}{9} - \frac{2}{3} = -\frac{2}{9} - \frac{6}{9} = -\frac{8}{9} \) - Second row, first column: \( 0 \cdot \frac{1}{3} + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot (-\frac{2}{3}) + 1 \cdot 1 = 1 \) Thus, we have: \[ (A^{-1})^2 = \begin{bmatrix} \frac{1}{9} & -\frac{8}{9} \\ 0 & 1 \end{bmatrix} \] Now we calculate \( (A^{-1})^3 \): \[ (A^{-1})^3 = (A^{-1})^2 \cdot A^{-1} = \begin{bmatrix} \frac{1}{9} & -\frac{8}{9} \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} \\ 0 & 1 \end{bmatrix} \] Calculating this product: - First row, first column: \( \frac{1}{9} \cdot \frac{1}{3} + (-\frac{8}{9}) \cdot 0 = \frac{1}{27} \) - First row, second column: \( \frac{1}{9} \cdot (-\frac{2}{3}) + (-\frac{8}{9}) \cdot 1 = -\frac{2}{27} - \frac{8}{9} = -\frac{2}{27} - \frac{24}{27} = -\frac{26}{27} \) - Second row, first column: \( 0 \cdot \frac{1}{3} + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot (-\frac{2}{3}) + 1 \cdot 1 = 1 \) Thus, we have: \[ (A^{-1})^3 = \begin{bmatrix} \frac{1}{27} & -\frac{26}{27} \\ 0 & 1 \end{bmatrix} \] ### Final Result The final result is: \[ (A^{-1})^3 = \begin{bmatrix} \frac{1}{27} & -\frac{26}{27} \\ 0 & 1 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[-3,1,2],[0,0,1],[-3,5,0]] ,then 8|A|

If A= [[2,3,5],[1,2,1],[0,1,7]] and A^(3)-lambda A^(2)+28A-10=0 , then the value of lambda is

If A= [[3,-3,4],[2,-3,4],[0,-1,1]] then find A^(3)

Let A=[[3,1,4],[0,2,-1],[1,-3,5]] ,then 48*|A^(-1)|=---

Let A= [[3,1,4],[0,2,-1],[1,-3,5]] then 48*|A^(-1)| =---

If A=[[3, 5, -1], [2, 0, 4], [1,-3, 0]] , then [[12, 4, -6], [3, 1, 14], [20, -14, -10]] is

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

If A==[[1, -1, 3], [2, 1, 0], [3, 3, 1]] , then first 3R_3 and then C_3 to C_3 +2C_2 on A gives

If A=[[2,a,-3] , [0,2,5] , [1,1,3]] then,find the value of a for which A^(-1) exists.

If A=[[1,3,2],[2,0,-1],[1,2,3]] ,such that A satisfies the equation A^(3)-4A^(2)-3A+kI=O where k-2