Home
Class 12
MATHS
If [[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]]...

If `[[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]]`, then `[[x, y], [2, 0]]^(-1)=`

A

`[[0, -2], [-2, 1]]`

B

`[[1, 0], [0, 1]]`

C

`[[0, -8], [-2, 1]]`

D

`[[0, (1)/(2)], [(1)/(2), -(1)/(4)]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inverse of the matrix \(\begin{bmatrix} x & y \\ 2 & 0 \end{bmatrix}\) given that \(\begin{bmatrix} x & y^3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 2 & 0 \end{bmatrix}\). ### Step 1: Compare the matrices From the equation \(\begin{bmatrix} x & y^3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 2 & 0 \end{bmatrix}\), we can compare the corresponding elements of the matrices. - From the first row, first column: \(x = 1\) - From the first row, second column: \(y^3 = 8\) - From the second row, first column: \(2 = 2\) (this is consistent) - From the second row, second column: \(0 = 0\) (this is consistent) ### Step 2: Solve for \(y\) We have \(y^3 = 8\). To find \(y\), we take the cube root of both sides: \[ y = \sqrt[3]{8} = 2 \] ### Step 3: Write the matrix Now we can substitute the values of \(x\) and \(y\) into the matrix: \[ \begin{bmatrix} x & y \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \] ### Step 4: Find the determinant of the matrix Next, we need to find the determinant of the matrix \(\begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}\): \[ \text{det}(A) = (1)(0) - (2)(2) = 0 - 4 = -4 \] ### Step 5: Find the adjoint of the matrix The adjoint of a \(2 \times 2\) matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is given by: \[ \text{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] For our matrix \(\begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}\), the adjoint is: \[ \text{adj}(A) = \begin{bmatrix} 0 & -2 \\ -2 & 1 \end{bmatrix} \] ### Step 6: Calculate the inverse of the matrix The inverse of the matrix \(A\) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-4} \cdot \begin{bmatrix} 0 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix} \] ### Final Answer Thus, the inverse of the matrix \(\begin{bmatrix} x & y \\ 2 & 0 \end{bmatrix}\) is: \[ \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

Find x and y, if 2[[1, 3],[ 0,x]]+[[y,0], [1, 2]]=[[5, 6],[ 1, 8]]

if [[2x+1,2y],[0,y^2+1]]=[[x+3,10],[0,26]] then the value of x+y

If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] then

If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] ,then

Find x and y if 2[[2,3],[0,x]]+[[y,0],[1,3]]=[[5,6],[1,8]]

Find x and y , if 2[[1,3],[0,x]]+[[y,0],[1,2]]=[[5,6],[1,8]]

Find the values of x and y satisfying the equation: 2[[1,3],[0,x]]+[[y,0],[1,2]]=[[5,6],[1,8]]

(2x -2y+3) dx -(x-y+1) dy=0 , " when" x=0, y=1

x^(2) - 1 = 0, y^(2) + 4y + 3 = 0

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[4, 5], [2, 1]], then

    Text Solution

    |

  2. If A=[[1, 2], [-5, 1]] and A^(-1)=xA+yI, then

    Text Solution

    |

  3. If [[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]], then [[x, y], [2, 0]]^(-1)=

    Text Solution

    |

  4. [[1, -tan((theta)/(2))], [tan((theta)/(2)), 1]][[1, tan((theta)/(2))],...

    Text Solution

    |

  5. If [[1, 1], [0, 1]]A=I, then A=

    Text Solution

    |

  6. If A=[[1, 2], [3, 4]] and AX=I, then X=

    Text Solution

    |

  7. If matrix A=[[1, 2],[3, 4]] such that AX=I , then X=

    Text Solution

    |

  8. If A=[[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]] and AB=I, then B=

    Text Solution

    |

  9. If AX=B, where {:A=[(-1,2),(2,-1)]:},{:B=[(3),(1)]:}, then X=

    Text Solution

    |

  10. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  11. If A=[[1, 2], [-1, 3]], B=[[0, 1], [2, 4]] and AX=B, then X=

    Text Solution

    |

  12. If A=[[1, 1], [1, 2]], B=[[4, 1], [3, 1]], C=[[24, 7], [31, 9]] and AX...

    Text Solution

    |

  13. If [[2, 1], [3, 2]]A[[-3, 2], [5, -3]]=[[1, 0], [0, 1]], then A=

    Text Solution

    |

  14. The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

    Text Solution

    |

  15. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  16. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  17. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  18. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  19. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  20. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |