Home
Class 12
MATHS
[[1, -tan((theta)/(2))], [tan((theta)/(2...

`[[1, -tan((theta)/(2))], [tan((theta)/(2)), 1]][[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]]^(-1)=`

A

`[[1, 0], [0, 1]]`

B

`[[0, 0], [0, 0]]`

C

`[[costheta, sintheta], [sintheta, costheta]]`

D

`[[costheta, -sintheta], [sintheta, costheta]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given matrix equation \[ \begin{bmatrix} 1 & -\tan\left(\frac{\theta}{2}\right) \\ \tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\left(\frac{\theta}{2}\right) \\ -\tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix}^{-1} \] we will follow these steps: ### Step 1: Define Variables Let \( x = \tan\left(\frac{\theta}{2}\right) \). Then, we can rewrite our matrices as: \[ A = \begin{bmatrix} 1 & -x \\ x & 1 \end{bmatrix} \] and \[ B = \begin{bmatrix} 1 & x \\ -x & 1 \end{bmatrix} \] ### Step 2: Find the Inverse of Matrix B The inverse of a \( 2 \times 2 \) matrix \( B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ B^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] For our matrix \( B \): - \( a = 1 \), \( b = x \), \( c = -x \), \( d = 1 \) - The determinant \( \text{det}(B) = ad - bc = 1 \cdot 1 - (-x) \cdot x = 1 + x^2 \) Thus, the inverse of \( B \) is: \[ B^{-1} = \frac{1}{1 + x^2} \begin{bmatrix} 1 & -x \\ x & 1 \end{bmatrix} \] ### Step 3: Multiply Matrices A and \( B^{-1} \) Now we need to compute \( A \cdot B^{-1} \): \[ A \cdot B^{-1} = \begin{bmatrix} 1 & -x \\ x & 1 \end{bmatrix} \cdot \frac{1}{1 + x^2} \begin{bmatrix} 1 & -x \\ x & 1 \end{bmatrix} \] Calculating the product: 1. First row, first column: \[ 1 \cdot 1 + (-x) \cdot x = 1 - x^2 \] 2. First row, second column: \[ 1 \cdot (-x) + (-x) \cdot 1 = -x - x = -2x \] 3. Second row, first column: \[ x \cdot 1 + 1 \cdot x = x + x = 2x \] 4. Second row, second column: \[ x \cdot (-x) + 1 \cdot 1 = -x^2 + 1 = 1 - x^2 \] Thus, we have: \[ A \cdot B^{-1} = \frac{1}{1 + x^2} \begin{bmatrix} 1 - x^2 & -2x \\ 2x & 1 - x^2 \end{bmatrix} \] ### Step 4: Substitute Back for \( x \) Now we substitute back \( x = \tan\left(\frac{\theta}{2}\right) \): \[ = \frac{1}{1 + \tan^2\left(\frac{\theta}{2}\right)} \begin{bmatrix} 1 - \tan^2\left(\frac{\theta}{2}\right) & -2\tan\left(\frac{\theta}{2}\right) \\ 2\tan\left(\frac{\theta}{2}\right) & 1 - \tan^2\left(\frac{\theta}{2}\right) \end{bmatrix} \] ### Step 5: Simplify Using Trigonometric Identities Using the identity \( 1 + \tan^2\left(\frac{\theta}{2}\right) = \sec^2\left(\frac{\theta}{2}\right) \) and \( 1 - \tan^2\left(\frac{\theta}{2}\right) = \cos\theta \): \[ = \cos\theta \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \] ### Final Answer The final answer is: \[ \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

(1+tan^(2)theta)/(1-tan^(2)theta) =

(1+tan^(2)theta)/(1-tan^(2)theta) =

If tan theta+(1)/(tan theta)=2, find the value of tan^(2)theta+(1)/(tan^(2)theta)

tan theta+(1)/(tan theta)=2 then prove that tan^(2)theta+(1)/(tan^(2)theta)=2

(tan^(2)(2 theta)-tan^(2)theta)/(1-tan^(2)(2 theta)tan^(2)theta) is equal to-

(1+tan^(2)theta)/(1+cot^(2)theta)=((1-tan theta)/(1-cot theta))^(2)

If tan theta=(1)/(sqrt(3)), then find the value of (2tan theta)/(1-tan^(2)theta)

Evaluate : ((1+tan theta)/(1-tan theta))^(2)

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2], [-5, 1]] and A^(-1)=xA+yI, then

    Text Solution

    |

  2. If [[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]], then [[x, y], [2, 0]]^(-1)=

    Text Solution

    |

  3. [[1, -tan((theta)/(2))], [tan((theta)/(2)), 1]][[1, tan((theta)/(2))],...

    Text Solution

    |

  4. If [[1, 1], [0, 1]]A=I, then A=

    Text Solution

    |

  5. If A=[[1, 2], [3, 4]] and AX=I, then X=

    Text Solution

    |

  6. If matrix A=[[1, 2],[3, 4]] such that AX=I , then X=

    Text Solution

    |

  7. If A=[[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]] and AB=I, then B=

    Text Solution

    |

  8. If AX=B, where {:A=[(-1,2),(2,-1)]:},{:B=[(3),(1)]:}, then X=

    Text Solution

    |

  9. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  10. If A=[[1, 2], [-1, 3]], B=[[0, 1], [2, 4]] and AX=B, then X=

    Text Solution

    |

  11. If A=[[1, 1], [1, 2]], B=[[4, 1], [3, 1]], C=[[24, 7], [31, 9]] and AX...

    Text Solution

    |

  12. If [[2, 1], [3, 2]]A[[-3, 2], [5, -3]]=[[1, 0], [0, 1]], then A=

    Text Solution

    |

  13. The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

    Text Solution

    |

  14. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  15. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  16. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  17. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  18. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  19. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  20. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |