Home
Class 12
MATHS
If [[1, 1], [0, 1]]A=I, then A=...

If `[[1, 1], [0, 1]]A=I`, then A=

A

`[[1, 1], [0, -1]]`

B

`[[-1, 1], [0, 1]]`

C

`[[1, 1], [0, 1]]`

D

`[[1, -1], [0, 1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A = I\), where \(I\) is the identity matrix, we need to find the matrix \(A\). ### Step 1: Identify the matrices involved Let \(B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\) and \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\). ### Step 2: Rewrite the equation The equation can be rewritten as: \[ B A = I \] ### Step 3: Multiply both sides by \(B^{-1}\) To isolate \(A\), we will multiply both sides of the equation by the inverse of \(B\) (denoted as \(B^{-1}\)): \[ B^{-1} B A = B^{-1} I \] This simplifies to: \[ I A = B^{-1} \] Thus, we have: \[ A = B^{-1} \] ### Step 4: Calculate the inverse of matrix \(B\) To find \(B^{-1}\), we will use the formula for the inverse of a \(2 \times 2\) matrix: \[ \text{If } B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ then } B^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \(B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\): - \(a = 1\), \(b = 1\), \(c = 0\), \(d = 1\) ### Step 5: Calculate the determinant of \(B\) The determinant \(det(B) = ad - bc = (1)(1) - (1)(0) = 1\). ### Step 6: Apply the inverse formula Now, substituting into the inverse formula: \[ B^{-1} = \frac{1}{1} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \] ### Step 7: State the final result Thus, we find: \[ A = B^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \] ### Conclusion The matrix \(A\) is: \[ A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

If I=[[1,0],[0,1]] , then I^4=

A=[[1, 0],[ 1, 1]]and I=[[1, 0],[ 0, 1]], then which one of the following holds for all n>=1 (by principle of mathematical induction)

If A=[[i, 0], [0, (i)/(2)]] , then A^(-1)=

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

IF A=[[x,1],[1,0]] and A^2=I , then A^(-1) is equal to

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0 , then I=

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

Let matrix A=[[1,0,0],[1,0,1],[0,1,0]] then the value of |A^(2012)-I| is equal to

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If [[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]], then [[x, y], [2, 0]]^(-1)=

    Text Solution

    |

  2. [[1, -tan((theta)/(2))], [tan((theta)/(2)), 1]][[1, tan((theta)/(2))],...

    Text Solution

    |

  3. If [[1, 1], [0, 1]]A=I, then A=

    Text Solution

    |

  4. If A=[[1, 2], [3, 4]] and AX=I, then X=

    Text Solution

    |

  5. If matrix A=[[1, 2],[3, 4]] such that AX=I , then X=

    Text Solution

    |

  6. If A=[[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]] and AB=I, then B=

    Text Solution

    |

  7. If AX=B, where {:A=[(-1,2),(2,-1)]:},{:B=[(3),(1)]:}, then X=

    Text Solution

    |

  8. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  9. If A=[[1, 2], [-1, 3]], B=[[0, 1], [2, 4]] and AX=B, then X=

    Text Solution

    |

  10. If A=[[1, 1], [1, 2]], B=[[4, 1], [3, 1]], C=[[24, 7], [31, 9]] and AX...

    Text Solution

    |

  11. If [[2, 1], [3, 2]]A[[-3, 2], [5, -3]]=[[1, 0], [0, 1]], then A=

    Text Solution

    |

  12. The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

    Text Solution

    |

  13. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  14. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  15. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  16. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  17. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  18. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  19. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  20. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |