Home
Class 12
MATHS
If A=[[1, tan((theta)/(2))], [-tan((thet...

If `A=[[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]] and AB=I`, then B=

A

`cos^(2)((theta)/(2))I`

B

`cos^(2)((theta)/(2))A`

C

`cos^(2)((theta)/(2))A^(T)`

D

`-cos^(2)((theta)/(2))A^(T)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( B \) such that \( AB = I \), where \( A = \begin{bmatrix} 1 & \tan\left(\frac{\theta}{2}\right) \\ -\tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix} \) and \( I \) is the identity matrix. ### Step 1: Find the determinant of matrix \( A \) The determinant of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated as \( ad - bc \). For matrix \( A \): \[ \text{det}(A) = 1 \cdot 1 - \left(-\tan\left(\frac{\theta}{2}\right) \cdot \tan\left(\frac{\theta}{2}\right)\right) = 1 + \tan^2\left(\frac{\theta}{2}\right) \] Using the identity \( 1 + \tan^2 x = \sec^2 x \): \[ \text{det}(A) = \sec^2\left(\frac{\theta}{2}\right) \] ### Step 2: Find the adjoint of matrix \( A \) The adjoint of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by \( \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \). For matrix \( A \): \[ \text{adj}(A) = \begin{bmatrix} 1 & -\tan\left(\frac{\theta}{2}\right) \\ \tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix} \] ### Step 3: Calculate the inverse of matrix \( A \) The inverse of a matrix \( A \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{\sec^2\left(\frac{\theta}{2}\right)} \cdot \begin{bmatrix} 1 & -\tan\left(\frac{\theta}{2}\right) \\ \tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix} \] \[ = \cos^2\left(\frac{\theta}{2}\right) \cdot \begin{bmatrix} 1 & -\tan\left(\frac{\theta}{2}\right) \\ \tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix} \] ### Step 4: Set \( B = A^{-1} \) Since \( AB = I \), we have: \[ B = A^{-1} = \cos^2\left(\frac{\theta}{2}\right) \cdot \begin{bmatrix} 1 & -\tan\left(\frac{\theta}{2}\right) \\ \tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix} \] ### Step 5: Identify the correct option Now we need to express \( B \) in terms of the options given. The matrix \( A \) can be expressed as: \[ A = \begin{bmatrix} 1 & \tan\left(\frac{\theta}{2}\right) \\ -\tan\left(\frac{\theta}{2}\right) & 1 \end{bmatrix} \] Thus, we can express \( B \) as: \[ B = \cos^2\left(\frac{\theta}{2}\right) \cdot A^T \] ### Final Answer The correct option for \( B \) is: \[ B = \cos^2\left(\frac{\theta}{2}\right) \cdot A^T \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

[[1, -tan((theta)/(2))], [tan((theta)/(2)), 1]][[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]]^(-1)=

(1+tan^(2)theta)/(1-tan^(2)theta) =

(1+tan^(2)theta)/(1-tan^(2)theta) =

Show that [[cos theta,-sin theta],[sin theta,cos theta]]=[[1,-tan(theta)/(2)],[tan(theta)/(2),1]][[1,tan(theta)/(2)],[-tan(theta)/(2),1]]^(-1)

If A=[[0,-tan(theta/2)],[tan(theta/2),0]](theta!=npi,n in Z),B=[[costheta,-sintheta],[sintheta,costheta]] and I=[[1,0],[0,1]], then the value of (2I)/(costheta+1) is equal to

If A(theta)=[(1, than theta),(-tan, theta=1)] and AB=l , then (sec^(2)theta)B is equal to

A = [(0,-tan""(theta)/(2)),(tan""(theta)/(2),0)] and (I+A)(I-A)^-1=[(a,-b),(b,a)] . Find 13(a^2+b^2)

If A=[[1,tan theta-tan theta,1]], show that A'A^(-1)=[[cos2 theta,-sin2 thetasin2 theta,cos2 theta]]

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, 2], [3, 4]] and AX=I, then X=

    Text Solution

    |

  2. If matrix A=[[1, 2],[3, 4]] such that AX=I , then X=

    Text Solution

    |

  3. If A=[[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]] and AB=I, then B=

    Text Solution

    |

  4. If AX=B, where {:A=[(-1,2),(2,-1)]:},{:B=[(3),(1)]:}, then X=

    Text Solution

    |

  5. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  6. If A=[[1, 2], [-1, 3]], B=[[0, 1], [2, 4]] and AX=B, then X=

    Text Solution

    |

  7. If A=[[1, 1], [1, 2]], B=[[4, 1], [3, 1]], C=[[24, 7], [31, 9]] and AX...

    Text Solution

    |

  8. If [[2, 1], [3, 2]]A[[-3, 2], [5, -3]]=[[1, 0], [0, 1]], then A=

    Text Solution

    |

  9. The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

    Text Solution

    |

  10. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  11. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  12. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  13. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  14. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  15. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  16. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  17. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |

  18. If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]], then A^(-1)=

    Text Solution

    |

  19. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  20. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |