Home
Class 12
MATHS
The matrix A satisfying A[[1, 5], [0, 1]...

The matrix A satisfying `A[[1, 5], [0, 1]]=[[3, -1], [6, 0]]` is

A

`[[6, -6], [12, 4]]`

B

`[[3, -16], [6, -30]]`

C

`[[9, -16], [36, -45]]`

D

`[[9, 4], [36, 4]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) that satisfies the equation \( A \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 6 & 0 \end{bmatrix} \), we can follow these steps: ### Step 1: Define the matrices Let: - \( B = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} \) - \( C = \begin{bmatrix} 3 & -1 \\ 6 & 0 \end{bmatrix} \) The equation can be rewritten as: \[ A B = C \] ### Step 2: Find the inverse of matrix \( B \) To isolate \( A \), we need to multiply both sides of the equation by \( B^{-1} \) (the inverse of \( B \)). Thus, we have: \[ A = C B^{-1} \] First, we need to calculate \( B^{-1} \). The formula for the inverse of a \( 2 \times 2 \) matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by: \[ B^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] For matrix \( B \): - \( a = 1, b = 5, c = 0, d = 1 \) Calculate the determinant: \[ \text{det}(B) = ad - bc = (1)(1) - (5)(0) = 1 \] Since the determinant is not zero, \( B^{-1} \) exists. Now, we can find \( B^{-1} \): \[ B^{-1} = \frac{1}{1} \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix} \] ### Step 3: Compute \( A \) Now substitute \( C \) and \( B^{-1} \) back into the equation: \[ A = C B^{-1} = \begin{bmatrix} 3 & -1 \\ 6 & 0 \end{bmatrix} \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix} \] ### Step 4: Perform the matrix multiplication Now, we perform the multiplication: 1. First row, first column: \( 3 \cdot 1 + (-1) \cdot 0 = 3 \) 2. First row, second column: \( 3 \cdot (-5) + (-1) \cdot 1 = -15 - 1 = -16 \) 3. Second row, first column: \( 6 \cdot 1 + 0 \cdot 0 = 6 \) 4. Second row, second column: \( 6 \cdot (-5) + 0 \cdot 1 = -30 + 0 = -30 \) Thus, we find: \[ A = \begin{bmatrix} 3 & -16 \\ 6 & -30 \end{bmatrix} \] ### Conclusion The matrix \( A \) that satisfies the equation is: \[ A = \begin{bmatrix} 3 & -16 \\ 6 & -30 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]] , M[[1],[-1], [0]]=[[1], [1],[-1]],and M[[1], [1], [1]]=[[0] ,[0], [12]] Then the sum of the diagonal entries of M is _________.

Find the matrix A such that ([1,1],[0,1])A=([3,3,5],[1,0,1])

" (b) Find the matrix "A" such that ([1,1],[0,1])A=([3,3,5],[1,0,1])

The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

The matrix A= [[0,1],[1,0]] is

The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

Matrix of co-factors of the matrix [[1, -1, 2], [-2, 3, 5], [-2, 0, -1]] is

Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)] (ii) A[(1, 2, 3 ),(4, 5 ,6)]=[(-7,-8,-9 ),(2, 4 ,6)]

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If A=[[1, tan((theta)/(2))], [-tan((theta)/(2)), 1]] and AB=I, then B=

    Text Solution

    |

  2. If AX=B, where {:A=[(-1,2),(2,-1)]:},{:B=[(3),(1)]:}, then X=

    Text Solution

    |

  3. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  4. If A=[[1, 2], [-1, 3]], B=[[0, 1], [2, 4]] and AX=B, then X=

    Text Solution

    |

  5. If A=[[1, 1], [1, 2]], B=[[4, 1], [3, 1]], C=[[24, 7], [31, 9]] and AX...

    Text Solution

    |

  6. If [[2, 1], [3, 2]]A[[-3, 2], [5, -3]]=[[1, 0], [0, 1]], then A=

    Text Solution

    |

  7. The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

    Text Solution

    |

  8. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  9. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  10. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  11. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  12. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  13. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  14. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  15. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |

  16. If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]], then A^(-1)=

    Text Solution

    |

  17. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  18. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  19. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  20. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |