Home
Class 12
MATHS
The inverse of the matrix [[2, 0, 0], [0...

The inverse of the matrix `[[2, 0, 0], [0, 1, 0], [0, 0, -1]]` is

A

`[[(1)/(2), 0, 0], [0, 1, 0], [0, 0, -1]]`

B

`[[-(1)/(2), 0, 0], [0, -1, 0], [0, 0, 1]]`

C

`[[-1, 0, 0], [0, -(1)/(2), 0], [0, 0, (1)/(2)]]`

D

`(-1)/(2)[[-(1)/(2), 0, 0], [0, -1, 0], [0, 0, -1]]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a diagonal matrix can be calculated by multiplying its diagonal elements. \[ \text{det}(A) = 2 \cdot 1 \cdot (-1) = -2 \] **Hint**: For a diagonal matrix, the determinant is simply the product of the diagonal elements. ### Step 2: Check if the Determinant is Non-Zero Since \(\text{det}(A) = -2 \neq 0\), the inverse of matrix \( A \) exists. **Hint**: An inverse exists only if the determinant is not equal to zero. ### Step 3: Calculate the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. For a diagonal matrix, the cofactor matrix is obtained by taking the determinant of the submatrices formed by removing one row and one column at a time, and applying the appropriate sign based on the position. The cofactor matrix \( C \) for matrix \( A \) is: \[ C = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \] Calculating the cofactors: - \( C_{11} = \text{det} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = -1 \) - \( C_{12} = -\text{det} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} = 0 \) - \( C_{13} = \text{det} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{21} = -\text{det} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} = 0 \) - \( C_{22} = \text{det} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} = -2 \) - \( C_{23} = -\text{det} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{31} = \text{det} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{32} = -\text{det} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = 0 \) - \( C_{33} = \text{det} \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} = 2 \) Thus, the cofactor matrix \( C \) is: \[ C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] Now, taking the transpose to get the adjoint: \[ \text{adj}(A) = C^T = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \] **Hint**: The adjoint is the transpose of the cofactor matrix. For diagonal matrices, the cofactor matrix will also be diagonal. ### Step 4: Calculate the Inverse of Matrix A Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-2} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{-1} & 0 \\ 0 & 0 & \frac{2}{-2} \end{bmatrix} \] This simplifies to: \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \] **Final Answer**: \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NIKITA PUBLICATION|Exercise MCQs|101 Videos
  • MHT-CET 2017

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[-0.5,0,0] , [0,4,0] , [0,0,1]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

" The inverse of the matrix "([1,0,0],[a,1,0],[b,c,1])" is "

NIKITA PUBLICATION-MATRICES-MULTIPLE CHOICE QUESTIONS
  1. If [[2, 1], [3, 2]]A[[-3, 2], [5, -3]]=[[1, 0], [0, 1]], then A=

    Text Solution

    |

  2. The inverse of the matrix [[x, 0, 0], [0, y, 0], [0, 0, z]] is

    Text Solution

    |

  3. The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

    Text Solution

    |

  4. If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], then A^(-1)=

    Text Solution

    |

  5. The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

    Text Solution

    |

  6. The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

    Text Solution

    |

  7. The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

    Text Solution

    |

  8. The inverse of the matrix [[1, 3, 3], [1, 4, 3], [1, 3, 4]] is

    Text Solution

    |

  9. The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

    Text Solution

    |

  10. The inverse of the matrix [[1, 0, 0], [3, 3, 0], [5, 2, -1]] is

    Text Solution

    |

  11. If A=[[1, 0, 0], [a, 1, 0], [b, c, 1]], then A^(-1)=

    Text Solution

    |

  12. The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

    Text Solution

    |

  13. The inverse of the matrix [[1, 2, 3], [1, 1, 5], [2, 4, 7]] is

    Text Solution

    |

  14. The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

    Text Solution

    |

  15. The inverse of the matrix [[2, -1, 1], [-1, 2, -1], [1, -1, 2]] is

    Text Solution

    |

  16. The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

    Text Solution

    |

  17. The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

    Text Solution

    |

  18. The inverse of the matrix [[2, -3, 3], [2, 2, 3], [3, -2, 2]] is

    Text Solution

    |

  19. The inverse of the matrix [[1, 2, -2], [-3, 0, -5], [2, 5, 0]] is

    Text Solution

    |

  20. The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

    Text Solution

    |